## GCE Examinations Advanced Subsidiary / Advanced Level

# Statistics Module S3

### Paper A

#### **MARKING GUIDE**

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.



Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

#### S3 Paper A - Marking Guide

1. (a) 
$$\hat{\mu} = \overline{V} = \frac{1439}{10} = 143.9$$

(b) 
$$\overline{V} \pm 1.96 \frac{\sigma}{\sqrt{n}} = 143.9 \pm 1.96. \frac{\sqrt{130}}{\sqrt{10}}$$
 M1 A1

M1 A1

**A**1

3. (a) let 
$$F = \text{time on French and } E = \text{time on English}$$
  
let  $A = F + E$  :  $A \sim N(55 + 90, 10^2 + 18^2) = N(145, 424)$  M1 A1  
 $P(A > 120) = P(Z > \frac{120 - 145}{\sqrt{424}})$  M1  
 $= P(Z > 1.21) = 0.8869$  M1 A1

(b) 
$$P(E > 2F) = P(E - 2F > 0)$$
 M1  
let  $B = E - 2F$   $\therefore B \sim N(90 - 2 \times 55, 18^2 + 4 \times 10^2) = \sim N(^20, 724)$  M1 A1  
 $P(B > 0) = P(Z > \frac{0 + 20}{\sqrt{724}})$  M1  
 $= P(Z > 0.74) = 1 - 0.7704 = 0.2296$  M1 A1 (11)

**4.** expected freq. males/watched = 
$$\frac{36 \times 40}{80}$$
 = 18

$$males/stranded = \frac{16\times40}{80} = 8$$
 M1 A2

 $H_0$ : no difference in preference of males and females  $H_1$ : difference in preference of males and females B1

2.143 < 4.605 : not significant

there is no evidence of a difference in preference of males and females A1 (11)

| 5. | (a)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |      |
|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|
| 3. | (a)        | temp. 16 9 11 5 7 21 12 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |      |
|    |            | position 2 15 5 19 10 4 6 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |      |
|    |            | temp. rank 2 6 5 8 7 1 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |      |
|    |            | temp. rank 2 6 5 8 7 1 4 3 pos'n rank 1 7 3 8 5 2 4 6 $d^2$ 1 1 4 0 4 1 0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |      |
|    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.62.42                            |      |
|    |            | $\sum d^2 = 20$ $r_s = 1 - \frac{6 \times 20}{8 \times 63} = 0.7619$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M2 A2<br>M1 A1                     |      |
|    |            | $r_s - 1 - \frac{1}{8 \times 63} = 0.7019$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WH AI                              |      |
|    | <i>(b)</i> | $H_0: \rho = 0  H_1: \rho > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1                                 |      |
|    |            | $n = 8, 5\%$ level : C.R. is $r_s > 0.6429$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1 A1                              |      |
|    |            | 0.7619 > 0.6429 ∴ significant there is evidence that she will do better at higher temperatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1                                 |      |
|    | (-)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |      |
|    | (c)        | e.g. this would not answer her query which relates to how well she does compared to others, all runners may be slower in higher temps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B2                                 | (12) |
|    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |      |
| 6. | (a)        | let $W =$ weight of component $\therefore W \sim N(46.7, 1.8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |      |
|    | ( )        | $\overline{W} \sim N(46.7, \frac{1.8}{12}) = \sim N(46.7, 0.15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1 A1                              |      |
|    |            | 47. 467.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |      |
|    | <i>(b)</i> | $P(\overline{W} > 47) = P(Z > \frac{47 - 46.7}{\sqrt{0.15}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                                 |      |
|    |            | = P(Z > 0.77) = 1 - 0.7794 = 0.2206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 A1                              |      |
|    | (c)        | $H_0: \mu = 46.7  H_1: \mu \neq 46.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1                                 |      |
|    | , ,        | 5% level :: C.R. is $z < 1.96$ or $z > 1.96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                                 |      |
|    |            | test statistic = $\frac{46.5-46.7}{\sqrt{\frac{1.8}{120}}}$ = $-0.816$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M2 A2                              |      |
|    |            | not in C.R. do not reject H <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |      |
|    |            | not in C.R. do not reject 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |      |
|    |            | no evidence of change in mean weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1                                 | (12) |
|    |            | no evidence of change in mean weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1                                 | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0: B(16, 0.1)$ is a suitable model $H_1: B(16, 0.1)$ is not a suitable model $P(0) = (0.9)^{16} = 0.1853$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A1<br>B1                           | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0: B(16, 0.1)$ is a suitable model $H_1: B(16, 0.1)$ is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model $H_1$ : B(16, 0.1) is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16 \times 15}{2} (0.1)^2 (0.9)^{14} = 0.2745$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0: B(16, 0.1)$ is a suitable model $H_1: B(16, 0.1)$ is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model $H_1$ : B(16, 0.1) is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16 \times 15}{2} (0.1)^2 (0.9)^{14} = 0.2745$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1                                 | (12) |
| 7. | (a)        | no evidence of change in mean weight $ \begin{aligned} &H_0: B(16,0.1) \text{ is a suitable model} \\ &H_1: B(16,0.1) \text{ is not a suitable model} \\ &P(0) = (0.9)^{16} = 0.1853 \\ &P(1) = 16(0.1)(0.9)^{15} = 0.3294 \\ &P(2) = \frac{16\times15}{2} (0.1)^2 (0.9)^{14} = 0.2745 \\ &P(3) = \frac{16\times15\times14}{3\times2} (0.1)^3 (0.9)^{13} = 0.1423 \\ &P(4) = \frac{16\times15\times14\times13}{4\times3\times2} (0.1)^4 (0.9)^{12} = 0.0514 \\ &\times 50 \text{ to give exp. freqs then freq of } \geq 5 = (50 - \text{sum of others}) \end{aligned} $                                                                                                                                                                                                                                                                                                                                                              | B1<br>M1 A2                        | (12) |
| 7. | (a)        | no evidence of change in mean weight $ H_0: B(16, 0.1) \text{ is a suitable model} \\ H_1: B(16, 0.1) \text{ is not a suitable model} \\ P(0) = (0.9)^{16} = 0.1853 \\ P(1) = 16(0.1)(0.9)^{15} = 0.3294 \\ P(2) = \frac{16\times15}{2}(0.1)^2(0.9)^{14} = 0.2745 \\ P(3) = \frac{16\times15\times14}{3\times2}(0.1)^3(0.9)^{13} = 0.1423 \\ P(4) = \frac{16\times15\times14\times13}{4\times3\times2}(0.1)^4(0.9)^{12} = 0.0514 \\ \times 50 \text{ to give exp. freqs then freq of } \geq 5 = (50 - \text{sum of others}) \\ \therefore \text{ exp. freqs are } 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 $                                                                                                                                                                                                                                                                                                                             | B1<br>M1 A2<br>M1 A1               | (12) |
| 7. | (a)        | no evidence of change in mean weight $ \begin{aligned} &H_0: B(16, 0.1) \text{ is a suitable model} \\ &H_1: B(16, 0.1) \text{ is not a suitable model} \\ &P(0) = (0.9)^{16} = 0.1853 \\ &P(1) = 16(0.1)(0.9)^{15} = 0.3294 \\ &P(2) = \frac{16 \times 15}{2} (0.1)^2 (0.9)^{14} = 0.2745 \\ &P(3) = \frac{16 \times 15 \times 14}{3 \times 2} (0.1)^3 (0.9)^{13} = 0.1423 \\ &P(4) = \frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2} (0.1)^4 (0.9)^{12} = 0.0514 \\ &\times 50 \text{ to give exp. freqs then freq of } \geq 5 = (50 - \text{sum of others}) \\ &\therefore \text{ exp. freqs are } 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 \\ &\text{combining groups } \geq 3 \end{aligned} $                                                                                                                                                                                                                          | B1<br>M1 A2                        | (12) |
| 7. | (a)        | no evidence of change in mean weight $ \begin{aligned} &H_0: B(16,0.1) \text{ is a suitable model} \\ &H_1: B(16,0.1) \text{ is not a suitable model} \\ &P(0) = (0.9)^{16} = 0.1853 \\ &P(1) = 16(0.1)(0.9)^{15} = 0.3294 \\ &P(2) = \frac{16\times15}{2} (0.1)^2 (0.9)^{14} = 0.2745 \\ &P(3) = \frac{16\times15\times14}{3\times2} (0.1)^3 (0.9)^{13} = 0.1423 \\ &P(4) = \frac{16\times15\times14\times13}{4\times3\times2} (0.1)^4 (0.9)^{12} = 0.0514 \\ &\times 50 \text{ to give exp. freqs then freq of } \geq 5 = (50 - \text{sum of others}) \\ &\therefore \text{ exp. freqs are } 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 \\ &\text{combining groups } \geq 3 \end{aligned} $ $O \qquad E \qquad (O-E) \qquad \frac{(O-E)^2}{E}$                                                                                                                                                                                           | B1<br>M1 A2<br>M1 A1               | (12) |
| 7. | (a)        | no evidence of change in mean weight $ H_0: B(16, 0.1) \text{ is a suitable model} $ $ H_1: B(16, 0.1) \text{ is not a suitable model} $ $ P(0) = (0.9)^{16} = 0.1853 $ $ P(1) = 16(0.1)(0.9)^{15} = 0.3294 $ $ P(2) = \frac{16\times15}{2}(0.1)^2(0.9)^{14} = 0.2745 $ $ P(3) = \frac{16\times15\times14}{3\times2}(0.1)^3(0.9)^{13} = 0.1423 $ $ P(4) = \frac{16\times15\times14\times13}{4\times3\times2}(0.1)^4(0.9)^{12} = 0.0514 $ $ \times 50 \text{ to give exp. freqs then freq of } \ge 5 = (50 - \text{sum of others}) $ $ \therefore \text{ exp. freqs are } 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 $ $ \text{combining groups } \ge 3 $ $ O \qquad E \qquad (O - E) \qquad \frac{(O - E)^2}{E} $ $ 4 \qquad 9.27 \qquad -5.27 \qquad 2.9960 $                                                                                                                                                                             | B1<br>M1 A2<br>M1 A1               | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0: B(16, 0.1)$ is a suitable model $H_1: B(16, 0.1)$ is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16\times15}{2}(0.1)^2(0.9)^{14} = 0.2745$ $P(3) = \frac{16\times15\times14}{3\times2}(0.1)^3(0.9)^{13} = 0.1423$ $P(4) = \frac{16\times15\times14\times13}{4\times3\times2}(0.1)^4(0.9)^{12} = 0.0514$ $\times 50$ to give exp. freqs then freq of $\geq 5 = (50 - \text{sum of others})$ $\therefore$ exp. freqs are $9.27$ , $16.47$ , $13.73$ , $7.12$ , $2.57$ , $0.84$ combining groups $\geq 3$ O  E  O  E  O  E  O  E  O  E  O  E  O  E  12  16.47  74.47  1.2132  18  13.73  4.27  1.3280                                                                                                                                                                                                                                | B1<br>M1 A2<br>M1 A1               | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model $H_1$ : B(16, 0.1) is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16\times15}{2}(0.1)^2(0.9)^{14} = 0.2745$ $P(3) = \frac{16\times15\times14}{3\times2}(0.1)^3(0.9)^{13} = 0.1423$ $P(4) = \frac{16\times15\times14\times13}{4\times3\times2}(0.1)^4(0.9)^{12} = 0.0514$ × 50 to give exp. freqs then freq of ≥ 5 = (50 − sum of others) ∴ exp. freqs are 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 combining groups ≥ 3  O E (O-E) $\frac{(O-E)^2}{E}$ 4 9.27 $^-$ 5.27 2.9960 12 16.47 $^-$ 4.47 1.2132 18 13.73 4.27 1.3280 16 10.53 5.47 2.8415                                                                                                                                                                                                                                                   | B1<br>M1 A2<br>M1 A1               | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model $H_1$ : B(16, 0.1) is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16\times15}{2}(0.1)^2(0.9)^{14} = 0.2745$ $P(3) = \frac{16\times15\times14}{3\times2}(0.1)^3(0.9)^{13} = 0.1423$ $P(4) = \frac{16\times15\times14\times13}{4\times3\times2}(0.1)^4(0.9)^{12} = 0.0514$ × 50 to give exp. freqs then freq of ≥ 5 = (50 − sum of others)  ∴ exp. freqs are 9.27, 16.47, 13.73, 7.12, 2.57, 0.84  combining groups ≥ 3  O  E  (O − E) $\frac{(O - E)^2}{E}$ 4  9.27  75.27  2.9960  12  16.47  74.47  1.2132  18  13.73  4.27  1.3280  16  10.53  5.47  2.8415  ∴ Σ $\frac{(O - E)^2}{E} = 8.379$                                                                                                                                                                                                 | B1<br>M1 A2<br>M1 A1               | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model $H_1$ : B(16, 0.1) is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16\times15}{2}(0.1)^2(0.9)^{14} = 0.2745$ $P(3) = \frac{16\times15\times14}{3\times2}(0.1)^3(0.9)^{13} = 0.1423$ $P(4) = \frac{16\times15\times14\times13}{4\times3\times2}(0.1)^4(0.9)^{12} = 0.0514$ × 50 to give exp. freqs then freq of ≥ 5 = (50 − sum of others)  ∴ exp. freqs are 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 combining groups ≥ 3  O  E  (O − E) $\frac{(O - E)^2}{E}$ 4  9.27  75.27  2.9960  12  16.47  74.47  1.2132  18  13.73  4.27  1.3280  16  10.53  5.47  2.8415  ∴ $\Sigma$ $\frac{(O - E)^2}{E}$ = 8.379 $v = 4 - 1 = 3$ , $\chi^2_{crit}(5\%) = 7.815$                                                                                                                                            | B1  M1 A2  M1 A1  M1               | (12) |
| 7. | (a)        | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model $H_1$ : B(16, 0.1) is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16 \times 15}{2} (0.1)^2 (0.9)^{14} = 0.2745$ $P(3) = \frac{16 \times 15 \times 14}{3 \times 2} (0.1)^3 (0.9)^{13} = 0.1423$ $P(4) = \frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2} (0.1)^4 (0.9)^{12} = 0.0514$ × 50 to give exp. freqs then freq of ≥ 5 = (50 − sum of others)  ∴ exp. freqs are 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 combining groups ≥ 3  O  E  O  E  O  E  O  E  O  E  O  E  O  E  12  16.47  1.2132  18  13.73  4.27  1.3280  16  10.53  5.47  2.8415  ∴ $\Sigma$ ∴ $\Sigma$ O  E  O  E  O  E  O  E  O  E  S  S  S  S  S  S  S  S  S  S  S  S                                                                                                                                              | B1  M1 A2  M1 A1  M1 A2  M1 A2     | (12) |
| 7. |            | no evidence of change in mean weight $H_0: B(16, 0.1) \text{ is a suitable model} \\ H_1: B(16, 0.1) \text{ is not a suitable model} \\ P(0) = (0.9)^{16} = 0.1853 \\ P(1) = 16(0.1)(0.9)^{15} = 0.3294 \\ P(2) = \frac{16a15}{2}(0.1)^2(0.9)^{14} = 0.2745 \\ P(3) = \frac{16a15x14x13}{3x2}(0.1)^3(0.9)^{13} = 0.1423 \\ P(4) = \frac{16a15x14x13}{4x3x2}(0.1)^4(0.9)^{12} = 0.0514 \\ \times 50 \text{ to give exp. freqs then freq of } \geq 5 = (50 - \text{sum of others}) \\ \therefore \text{ exp. freqs are } 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 \\ \text{combining groups } \geq 3 \\ O E (O - E) \frac{(O - E)^2}{E} \\ 4 9.27 - 5.27 2.9960 \\ 12 16.47 - 4.47 1.2132 \\ 18 13.73 4.27 1.3280 \\ 16 10.53 5.47 2.8415 \\ \therefore \sum \frac{(O - E)^2}{E} = 8.379 \\ v = 4 - 1 = 3, \chi^2_{\text{crit}}(5\%) = 7.815 \\ 8.379 > 7.815 \therefore \text{ reject H}_0 \\ B(16, 0.1) \text{ is not a suitable model}$ | B1  M1 A2  M1 A1  M1 A2  M1 A2  A1 | (12) |
| 7. | (a) (b)    | no evidence of change in mean weight $H_0$ : B(16, 0.1) is a suitable model $H_1$ : B(16, 0.1) is not a suitable model $P(0) = (0.9)^{16} = 0.1853$ $P(1) = 16(0.1)(0.9)^{15} = 0.3294$ $P(2) = \frac{16 \times 15}{2} (0.1)^2 (0.9)^{14} = 0.2745$ $P(3) = \frac{16 \times 15 \times 14}{3 \times 2} (0.1)^3 (0.9)^{13} = 0.1423$ $P(4) = \frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2} (0.1)^4 (0.9)^{12} = 0.0514$ × 50 to give exp. freqs then freq of ≥ 5 = (50 − sum of others)  ∴ exp. freqs are 9.27, 16.47, 13.73, 7.12, 2.57, 0.84 combining groups ≥ 3  O  E  O  E  O  E  O  E  O  E  O  E  O  E  12  16.47  1.2132  18  13.73  4.27  1.3280  16  10.53  5.47  2.8415  ∴ $\Sigma$ ∴ $\Sigma$ O  E  O  E  O  E  O  E  O  E  S  S  S  S  S  S  S  S  S  S  S  S                                                                                                                                              | B1  M1 A2  M1 A1  M1 A2  M1 A2     | (12) |

Total (75)

### Performance Record – S3 Paper A

| Question no. | 1                      | 2        | 3                                    | 4                 | 5                        | 6                                        | 7                               | Total |
|--------------|------------------------|----------|--------------------------------------|-------------------|--------------------------|------------------------------------------|---------------------------------|-------|
| Topic(s)     | confidence<br>interval | sampling | linear<br>comb. of<br>Normal<br>r.v. | conting.<br>table | Spearman's,<br>hyp. test | dist. of<br>sample<br>mean,<br>hyp. test | goodness<br>of fit,<br>binomial |       |
| Marks        | 6                      | 7        | 11                                   | 11                | 12                       | 12                                       | 16                              | 75    |
| Student      |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              |                        |          |                                      |                   |                          |                                          |                                 |       |
|              | <u> </u>               |          |                                      |                   |                          |                                          |                                 |       |