GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S3

Paper A

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

S3 Paper A - Marking Guide

1. (a) $\hat{\mu}=\bar{V}=\frac{1439}{10}=143.9$ M1 A1
(b) $\bar{V} \pm 1.96 \frac{\sigma}{\sqrt{n}}=143.9 \pm 1.96 \cdot \frac{\sqrt{130}}{\sqrt{10}}$
giving $(136.8,151.0)$
M1 A1
A2
(6)
2. (a) a sample taken such that all possible samples of required size have an equal chance of being selected
(b) number members on list 01 to 70
start at random place in table write down each 2-digit number ignoring $00,71+$ and numbers already selected until twelve numbers chosen identify members corresponding to selected numbers
```
B3
```

(c) e.g. survey of opinions on changing surgery hours
may wish to know views of groups such as working / not working B2
3. (a) let $F=$ time on French and $E=$ time on English

$$
\begin{array}{rlrl}
\text { let } A=F+E \therefore A \sim \mathrm{~N}\left(55+90,10^{2}+18^{2}\right)=\sim \mathrm{N}(145,424) & & \text { M1 A1 } \\
\mathrm{P}(A>120) & =\mathrm{P}\left(Z>\frac{120-145}{\sqrt{424}}\right) & & \text { M1 } \\
& =\mathrm{P}(Z>-1.21)=0.8869 & & \text { M1 A1 }
\end{array}
$$

(b) $\mathrm{P}(E>2 F)=\mathrm{P}(E-2 F>0)$
M1

$$
\begin{array}{rlrl}
\text { let } B=E-2 F \therefore B \sim \mathrm{~N}\left(90-2 \times 55,18^{2}+4 \times 10^{2}\right)=\sim \mathrm{N}(-20,724) & & \text { M1 A1 } \\
\mathrm{P}(B>0) & =\mathrm{P}\left(Z>\frac{0+20}{\sqrt{724}}\right) & & \text { M1 } \\
& =\mathrm{P}(Z>0.74)=1-0.7704=0.2296 & & \text { M1 A1 } \tag{11}
\end{array}
$$

4. \quad expected freq. males/watched $=\frac{36 \times 40}{80}=18$
males $/$ stranded $=\frac{16 \times 40}{80}=8$
M1 A2
$\begin{array}{llll}\text { giving expected freqs } & 18 & 8 & 14\end{array}$ $\begin{array}{lll}18 \quad 8 & 14\end{array}$

A1
H_{0} : no difference in preference of males and females
H_{1} : difference in preference of males and females

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
21	18	3	0.5
6	8	-2	0.5
13	14	-1	0.0714
15	18	-3	0.5
10	8	2	0.5
15	14	1	0.0714

$\therefore \Sigma \frac{(O-E)^{2}}{E}=2.143$
M1 A2
$v=2, \chi_{\text {crit }}^{2}(10 \%)=4.605$
M1 A1
$2.143<4.605 \therefore$ not significant
there is no evidence of a difference in preference of males and females A1
5. (a)

temp.	16	9	11	5	7	21	12	15
position	2	15	5	19	10	4	6	11
temp. rank	2	6	5	8	7	1	4	3
pos'n rank	1	7	3	8	5	2	4	6
d^{2}	1	1	4	0	4	1	0	9

$\Sigma d^{2}=20$
M2 A2
$r_{s}=1-\frac{6 \times 20}{8 \times 63}=0.7619 \quad$ M1 A1
(b) $\quad \mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$
$n=8,5 \%$ level \therefore C.R. is $r_{s}>0.6429$
B1
M1 A1
$0.7619>0.6429 \therefore$ significant
there is evidence that she will do better at higher temperatures
A1
(c) e.g. this would not answer her query which relates to how well she does compared to others, all runners may be slower in higher temps

B2
6. (a) let $W=$ weight of component $\therefore W \sim \mathrm{~N}(46.7,1.8)$
$\bar{W} \sim \mathrm{~N}\left(46.7, \frac{1.8}{12}\right)=\sim \mathrm{N}(46.7,0.15)$
M1 A1
(b) $\mathrm{P}(\bar{W}>47)=\mathrm{P}\left(Z>\frac{47-46.7}{\sqrt{0.15}}\right)$ M1

$$
=\mathrm{P}(Z>0.77)=1-0.7794=0.2206
$$

(c) $\quad \mathrm{H}_{0}: \mu=46.7 \quad \mathrm{H}_{1}: \mu \neq 46.7$

B1
5% level \therefore C.R. is $z<{ }^{-} 1.96$ or $z>1.96$
B1
test statistic $=\frac{46.5-46.7}{\sqrt{\frac{1.8}{30}}}=-0.816$
not in C.R. do not reject H_{0}
no evidence of change in mean weight
A1
7. (a) $\mathrm{H}_{0}: \mathrm{B}(16,0.1)$ is a suitable model
$\mathrm{H}_{1}: \mathrm{B}(16,0.1)$ is not a suitable model
B1
$P(0)=(0.9)^{16}=0.1853$
$P(1)=16(0.1)(0.9)^{15}=0.3294$
$P(2)=\frac{16 \times 15}{2}(0.1)^{2}(0.9)^{14}=0.2745$
$P(3)=\frac{16 \times 15 \times 14}{3 \times 2}(0.1)^{3}(0.9)^{13}=0.1423$
M1 A2
$\mathrm{P}(4)=\frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2}(0.1)^{4}(0.9)^{12}=0.0514$
$\times 50$ to give exp. freqs then freq of $\geq 5=(50-$ sum of others $)$
\therefore exp. freqs are $9.27,16.47,13.73,7.12,2.57,0.84$
M1 A1
combining groups ≥ 3

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
4	9.27	-5.27	2.9960
12	16.47	-4.47	1.2132
18	13.73	4.27	1.3280
16	10.53	5.47	2.8415

$\therefore \Sigma \frac{(O-E)^{2}}{E}=8.379$
M1 A2
$v=4-1=3, \chi_{\text {crit }}^{2}(5 \%)=7.815$
$8.379>7.815 \therefore$ reject H_{0}
$B(16,0.1)$ is not a suitable model
A1
(b) $\quad v=5-2=3, \chi_{\text {crit }}^{2}(5 \%)=7.815$

M1 A1
$2.127<7.815 \therefore$ do not reject H_{0}, the binomial dist. is a suitable model
A1
Performance Record - S3 Paper A

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
Topic(s)	confidence interval	sampling	linear comb. of Normal r.v.					
Marks			conting. table	Spearman's, hyp. test	dist. of sample mean, hyp. test			

