GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S3

Paper B MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S3 Paper B – Marking Guide

1.	(a)	divide poulation into distinct groups sample sizes from each group determined by proportions in population sample any member of group until quota is filled	В3	
	<i>(b)</i>	e.g. non-random sample within strata so may be biased	B1	
	(c)	e.g. survey on political attitudes according to age group too time-consuming / impractical to random sample within strata	B2	(6)
2.		freq. $0-45 = \frac{45}{360} \times 96 = 12$ etc. giving exp. freqs. 12, 12, 24, 24, 12, 12	M1 A1	
		continuous uniform distribution is a suitable model continuous uniform distribution is not a suitable model	B1	
		$O \qquad E \qquad (O-E) \qquad \frac{(O-E)^2}{E}$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	.:. Σ	$\frac{(O-E)^2}{E} = 12.625$	M1 A2	
		$5 - 1 = 5, \chi^2_{\text{crit}}(5\%) = 11.070$	M1 A1	
		$25 > 11.070$ \therefore reject H ₀ inuous uniform distribution is not a suitable model	A1	(9)
3.	(a)	$\mathrm{mean} = \frac{(46 \times 60) + 15}{20} = 138.75$	M1	
0.	(4)	C.I. $\overline{x} \pm 1.6449 \frac{\sigma}{\sqrt{n}} = 138.75 \pm 1.6449 \cdot \frac{23}{\sqrt{20}}$	M1 A1	
		giving (130.3, 147.2) $\sqrt{20}$	A2	
	<i>(b)</i>	width = $2 \times 1.6449 \times \frac{23}{\sqrt{n}}$:: $2 \times 1.6449 \times \frac{23}{\sqrt{n}} < 10$	M1 A1	
		$\therefore \sqrt{n} > 7.56654$	A1	
		giving $n > 57.25$ so min. value of $n = 58$	M1 A1	
	(c)	e.g. she might buy big-budget movies with longer credits	B1	(11)
4.	expe	cted freq. 8am-6pm/minor = $\frac{108 \times 56}{148}$ = 40.86		
		$6pm-2am/minor = \frac{108\times71}{148} = 51.81$	M1 A2	
	givin	ng expected freqs 40.86 15.14 51.81 19.19		
	Π.	15.33 5.67	A1	
		proportion of serious injuries independent of time proportion of serious injuries varies with time	B1	
		$O \qquad E \qquad (O-E) \qquad \frac{(O-E)^2}{E}$		
		45 40.86 4.14 0.4195 11 15.14 -4.14 1.1321		
		49 51.81 -2.81 0.1524		
		22 19.19 2.81 0.4115 14 15.33 -1.33 0.1154		
	-	7 5.67 1.33 0.3120		
		$\frac{(O-E)^2}{E} = 2.543$	M1 A2	
		2, $\chi^2_{\text{crit}}(5\%) = 5.991$ 3 < 5.991 ∴ not significant	M1 A1	
	there	s is no evidence of prop'n of serious injuries varying with time	A1	(11)

5.	(a)													
		bottle	A	В	C	D	Ε		G	H	Ι	J		
		enth. rank	4	7	2	1	8	6	5	10	9	3		
		price rank	1	6	2	3	8 10 4	7	9			5		
		d^2	9	1	0	4	4	1	16	36	1	4		
		$\Sigma d^2 = 76$											M2 A2	
		$r_s = 1 - \frac{6 \times 76}{10 \times 99}$	$\frac{5}{9} = 0$.5394									M1 A1	
	<i>(b)</i>	$H_0: \rho = 0$ $H_1: \rho > 0$											B1	
		$n = 10, 5\%$ level \therefore C.R. is $r_s > 0.5636$										M1 A1		
		$0.5394 < 0.5636$ \therefore not significant										A1		
		there is no evidence of positive correlation												
	(c)	share ranks,	both (5.5, us	e pm	ec							B2	(12)
6.	(a)	$\hat{\mu} = \overline{V} = \frac{103}{8}$	<u>367</u> =	129.6	cm								M1 A1	
••	(4)	$\hat{\sigma}^2 = s^2 = \frac{8}{2}$	0			5075	(2) - 9	7.00					M2 A1	
		$0 - s - \frac{1}{2}$	79 (80	- 129	.38/3) – 8	7.09					MIZ AI	
	<i>(b)</i>	$H_0: \mu_V = \mu_M$											B1	
	1% level :: C.R. is $z < -2.5758$ or $z > 2.5758$									B1				
		test statistic = $\frac{129.6-130.5}{\sqrt{\frac{87.09}{80} + \frac{96.24}{280}}} = -0.7520$ not in C.R. do not reject H ₀									M2 A2			
											M1			
		no evidence of difference in mean heights											A1	(13)
7.	(a)	let $X = time$	to ma	rk P1	paper									
		let $A = X_1 - X_2$: $A \sim N(0, 2 \times 17^2) = \sim N(0, 578)$									M1 A1			
	$P(-5 < A < 5) = P(\frac{-5-0}{\sqrt{578}} < Z < \frac{5-0}{\sqrt{578}})$										M1 A1			
		= P(-0.21 < Z < 0.21) = 0.5832 - (1 - 0.5832) = 0.166										M1 A1		
	(\mathbf{h})	let $M = time$			1	1	- C			- C1				
	(b)		mark	sip	aper									
	let $T = M_1 + \dots + M_{45} + S_1 + \dots + S_{80}$ $\therefore T \sim N(45 \times 314 + 80 \times 284, 45 \times 42^2 + 80 \times 29^2) = \sim N(36850, 14666)$								46 660)	M2 A2				
		P(time < 10 hours) = P(T < 36 000) = P(Z < $\frac{36000-36850}{\sqrt{146660}})$									M1			
	= P(Z < 2.22) = 1 - 0.9868 = 0.0132									M1 A1	(13)			

Total (75)

Performance Record – S3 Paper B

1	2	3	4	5	6	7	Total
sampling	goodness of fit, cont. unif.	confidence interval	conting. table	Spearman's, hyp. test	unbiased estimates, diff. of means hyp. test	linear comb. of Normal r.v.	
6	9	11	11	12	13	13	75
	sampling	sampling goodness of fit, cont. unif.	sampling goodness of fit, cont. unif. confidence	sampling goodness of fit, cont. unif. confidence table	sampling goodness of fit, cont. unif. confidence conting. table Spearman's, hyp. test	sampling goodness of fit, cont. unif. confidence interval conting. table Spearman's, hyp. test unbiased estimates, diff. of means hyp. test	sampling sampling of fit, cont. unif.goodness confidence intervalconting. tableSpearman's, hyp. testunbiased estimates, diff. of means hyp. testlinear comb. of Normal r.v.