GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S3

Paper C

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

S3 Paper C - Marking Guide

1. (a) $72,65,36,61,12,17$

M1 A2
(b) e.g. advantage - avoids bias B1
disadvantage - time consuming
B1
(5)
2.
(a) $\bar{T} \sim \mathrm{~N}\left(28.5, \frac{7.2^{2}}{8}\right)=\sim \mathrm{N}(28.5,6.48)$
M1 A1
(b) $\mathrm{P}(25<\bar{T}<30)=\mathrm{P}\left(\frac{25-28.5}{\sqrt{6.48}}<Z<\frac{30-28.5}{\sqrt{6.48}}\right)$
M1 A1
$=\mathrm{P}\left({ }^{-} 1.37<Z<0.59\right)=0.7224-(1-0.9147)=0.637$
M1 A1
3. (a) $\mathrm{E}(X)=(2 \times 0.05)+(4 \times 0.15)+(7 \times 0.3)+(k \times 0.5)$

M1

$$
=2.8+0.5 k
$$

(b) $\mathrm{E}(2 \bar{X}-5)=2(2.8+0.5 k)-5=k+0.6$

M1
\therefore bias $=0.6$
M1 A1
(c) unbiased est. of $k=2 \bar{X}-5.6=(2 \times 8.34)-5.6=11.08$

M1 A1 (7)
4. let $T=$ total mass of waste

$$
\begin{array}{ll}
\therefore T \sim \mathrm{~N}\left(8 \times 6.8+3 \times 3.2,8 \times 1.5^{2}+3 \times 0.6^{2}\right)=\sim \mathrm{N}(64,19.08) & \mathrm{M} 2 \mathrm{~A} 2 \\
\mathrm{P}(T>70)=\mathrm{P}\left(Z>\frac{70-64}{\sqrt{19.08}}\right) & \mathrm{M} 1
\end{array}
$$

$$
\begin{equation*}
=\mathrm{P}(Z>1.37)=1-0.9147=0.0853 \tag{7}
\end{equation*}
$$

M1 A1
5. $\quad \mathrm{H}_{0}: \mu_{A}=\mu_{N} \quad \mathrm{H}_{1}: \mu_{A}<\mu_{N}$

B1
5% level \therefore C.R. is $z<{ }^{-} 1.6449 \quad$ B1
test statistic $=\frac{32.8-35.1}{\sqrt{\frac{4.6^{2}}{50}+\frac{.0^{2}}{90}}}=-2.6382 \quad$ M2 A2
in C.R. \therefore reject $\mathrm{H}_{0} \quad$ M1
there is evidence that those in school teams complete task quicker A1
(8)
6. expected freq. Highfield/English $=\frac{80 \times 46}{120}=30.67 \quad$ M1 A1
giving expected freqs $\quad 30.67 \quad 15.33$
$49.33 \quad 24.67$
M1 A1
H_{0} : no difference in proportions at the two schools
H_{1} : there is a difference in proportions at the two schools
B1

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
32	30.67	1.33	0.0577
14	15.33	-1.33	0.1154
48	49.33	-1.33	0.0359
26	24.67	1.33	0.0717

$\therefore \Sigma \frac{(O-E)^{2}}{E}=0.2807$
M1 A2
$v=1, \chi_{\text {crit }}^{2}(10 \%)=2.705$
M1 A1
$0.2807<2.705 \therefore$ not significant
there is no evidence of a difference in proportions at the two schools
A1
7. (a) $S_{p p}=70932-\frac{1176^{2}}{20}=1783.2$
$S_{t t}=19213-\frac{511^{2}}{20}=6156.95$
$S_{p t}=27188-\frac{1176 \times 511}{20}=-2858.8$
M1
$r=\frac{-2858.8}{\sqrt{1783.2 \times 6156.95}}={ }^{-} 0.8628 \quad$ M1 A1
(b) $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0$

B1
$n=20,1 \%$ level \therefore C.R. is $r<-0.5155$
M1 A1

- $0.8628<{ }^{-} 0.5155 \therefore$ significant
there is evidence that people with lower rest pulse are fitter
A1
(c) variables need to be jointly normally distributed

B1
e.g. it seems reasonable that the fitness of those with a given rest pulse should follow a normal dist. and vice versa

B1
8. (a) e.g. particles are emitted singly, at random and at a constant rate (for near future given long half-life) so seems suitable

B3
(b) $\hat{\mu}=\bar{x}=\frac{\sum f x}{\sum f}=\frac{96}{80}=1.2$

M1 A1
$\Sigma f x^{2}=32+56+72+48=208$
M1
$\hat{\sigma}^{2}=s^{2}=\frac{80}{79}\left(\frac{208}{80}-1.2^{2}\right)=1.17$
M1 A1
(c) variance \approx mean as would be expected with a Poisson distribution

B1
(d) $\quad \mathrm{H}_{0}: \mathrm{Po}(1.2)$ is a suitable model
$\mathrm{H}_{1}: \mathrm{Po}(1.2)$ is not a suitable model
B1
$\mathrm{P}(0)=\mathrm{e}^{-1.2}=0.3012$
$\mathrm{P}(1)=1.2 \mathrm{e}^{-1.2}=0.3614$
$\mathrm{P}(2)=\frac{1.2^{2} \mathrm{e}^{-1.2}}{2}=0.2169$
$P(3)=\frac{1.2^{3} \mathrm{e}^{-1.2}}{3 \times 2}=0.0867$
M1 A2
$\mathrm{P}(4)=\frac{1.2^{4} \mathrm{e}^{-1.2}}{4 \times 3 \times 2}=0.0260$
$\times 80$ to give exp. freqs then freq of $\geq 5=(80-$ sum of others $)$
\therefore exp. freqs are $24.10,28.91,17.35,6.94,2.08,0.62$
M1 A1
combining groups ≥ 3

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
23	24.10	-1.1	0.0502
32	28.91	3.09	0.3303
14	17.35	-3.35	0.6468
11	9.64	1.36	0.1919
$\therefore \Sigma \frac{(O-E)^{2}}{E}=1.219$		M1 A1	
$v=4-2=2, \chi^{2}$ crit $(5 \%)=5.991$			
$1.219<5.991$. do not reject H_{0}	M1		
$\operatorname{Po(1.2)\text {isasuitablemodel}}$			

Total

Performance Record - S3 Paper C

Question no.	1	2	3	4	5	6	7	8	Total
Topic(s)	sampling	$\begin{aligned} & \text { dist. of } \\ & \text { sample } \\ & \text { sean } \end{aligned}$	bias	$\begin{aligned} & \hline \text { linear } \\ & \text { comb. of } \\ & \text { Normal } \\ & \text { r.v. } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { diff. of } \\ \text { means } \\ \text { hyp. test } \end{array}$	$\begin{aligned} & \hline \text { conting. } \\ & \text { table } \end{aligned}$	pmcc, hyp. test	$\begin{aligned} & \hline \text { goodness } \\ & \text { of fit, } \\ & \text { Poisson } \end{aligned}$	
Marks	5	6	7	7	8	11	11	20	75
Student									

