GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C2

Paper D

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Find

$$
\begin{equation*}
\int\left(3 x^{2}+\frac{1}{2 x^{2}}\right) \mathrm{d} x . \tag{4}
\end{equation*}
$$

2.

The diagram shows triangle $P Q R$ in which $P Q=x, P R=7-x, Q R=x+1$ and $\angle P Q R=60^{\circ}$.

Using the cosine rule, find the value of x.
3.

The diagram shows the curve with equation $y=\frac{4 x}{(x+1)^{2}}$.
The shaded region is bounded by the curve, the x-axis and the line $x=1$.
(i) Use the trapezium rule with four intervals, each of width 0.25 , to find an estimate for the area of the shaded region.
(ii) State, with a reason, whether your answer to part (a) is an under-estimate or an over-estimate of the true area.
4. The coefficient of x^{2} in the binomial expansion of $(1+k x)^{7}$, where k is a positive constant, is 525 .
(i) Find the value of k.

Using this value of k,
(ii) show that the coefficient of x^{3} in the expansion is 4375,
(iii) find the first three terms in the expansion in ascending powers of x of

$$
\begin{equation*}
(2-x)(1+k x)^{7} \tag{3}
\end{equation*}
$$

5. (i) Given that

$$
8 \tan x-3 \cos x=0
$$

show that

$$
\begin{equation*}
3 \sin ^{2} x+8 \sin x-3=0 . \tag{3}
\end{equation*}
$$

(ii) Find, to 2 decimal places, the values of x in the interval $0 \leq x \leq 2 \pi$ such that

$$
\begin{equation*}
8 \tan x-3 \cos x=0 \tag{5}
\end{equation*}
$$

6.

$$
\mathrm{f}(x)=2 x^{3}+3 x^{2}-6 x+1
$$

(a) Find the remainder when $\mathrm{f}(x)$ is divided by $(2 x-1)$.
(b) (i) Find the remainder when $\mathrm{f}(x)$ is divided by $(x+2)$.
(ii) Hence, or otherwise, solve the equation

$$
\begin{equation*}
2 x^{3}+3 x^{2}-6 x-8=0 \tag{6}
\end{equation*}
$$

7. (i) Given that

$$
\log _{2}(y-1)=1+\log _{2} x,
$$

show that

$$
\begin{equation*}
y=2 x+1 . \tag{3}
\end{equation*}
$$

(ii) Solve the simultaneous equations

$$
\begin{align*}
& \log _{2}(y-1)=1+\log _{2} x \\
& 2 \log _{3} y=2+\log _{3} x \tag{7}
\end{align*}
$$

8. The first two terms of an arithmetic progression are $(t-1)$ and $\left(t^{2}-5\right)$ respectively, where t is a positive constant.
(a) Find and simplify expressions in terms of t for
(i) the common difference,
(ii) the third term.

Given also that the third term is 19 ,
(b) find the value of t,
(c) show that the 10th term is 75 ,
(d) find the sum of the first 40 terms.
9.

The diagram shows the curves $y=2 x^{2}-6 x-3$ and $y=9+3 x-x^{2}$.
(i) Find the coordinates of the points where the two curves intersect.
(ii) Find the area of the shaded region bounded by the two curves.

