GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C2

Paper H

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1.

$$
\mathrm{f}(x)=3 x^{3}-2 x^{2}+k x+9 .
$$

Given that when $\mathrm{f}(x)$ is divided by $(x+2)$ there is a remainder of -35 ,
(i) find the value of the constant k,
(ii) find the remainder when $\mathrm{f}(x)$ is divided by $(3 x-2)$.
2.

The diagram shows the curve with equation $y=4 x+\frac{1}{x}, x>0$.
Use the trapezium rule with three intervals, each of width 1 , to estimate the area of the shaded region bounded by the curve, the x-axis and the lines $x=1$ and $x=4$.
3. The sides of a triangle have lengths of $7 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm .

Find the area of the triangle correct to 3 significant figures.
4. Find all values of x in the interval $0 \leq x<360^{\circ}$ for which

$$
2 \sin ^{2} x-2 \cos x-\cos ^{2} x=1,
$$

giving non-exact answers to 1 decimal place.
5. (i) Describe fully a single transformation that maps the graph of $y=3^{x}$ onto the graph of $y=\left(\frac{1}{3}\right)^{x}$.
(ii) Sketch on the same diagram the curves $y=\left(\frac{1}{3}\right)^{x}$ and $y=2\left(3^{x}\right)$, showing the coordinates of any points where each curve crosses the coordinate axes.

The curves $y=\left(\frac{1}{3}\right)^{x}$ and $y=2\left(3^{x}\right)$ intersect at the point P.
(iii) Find the x-coordinate of P to 2 decimal places and show that the y-coordinate of P is $\sqrt{2}$.
6. Evaluate
(i) $\int_{1}^{4}\left(x^{2}-5 x+4\right) \mathrm{d} x$,
(ii) $\int_{-\infty}^{-1} \frac{1}{x^{4}} \mathrm{~d} x$.
7.

The diagram shows part of a design being produced by a computer program.
The program draws a series of circles with each one touching the previous one and such that their centres lie on a horizontal straight line.

The radii of the circles form a geometric sequence with first term 1 mm and second term 1.5 mm . The width of the design is w as shown.
(i) Find the radius of the fourth circle to be drawn.
(ii) Show that when eight circles have been drawn, $w=98.5 \mathrm{~mm}$ to 3 significant figures.
(iii) Find the total area of the design in square centimetres when ten circles have been drawn.
8. Given that for small values of x

$$
(1+a x)^{n} \approx 1-24 x+270 x^{2},
$$

where n is an integer and $n>1$,
(i) show that $n=16$ and find the value of a,
(ii) use your value of a and a suitable value of x to estimate the value of $(0.9985)^{16}$, giving your answer to 5 decimal places.
9.

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which crosses the x-axis at the origin and at the points A and B.

Given that

$$
\mathrm{f}^{\prime}(x)=4-6 x-3 x^{2}
$$

(i) find an expression for y in terms of x,
(ii) show that A has coordinates $(-4,0)$ and find the coordinates of B,
(iii) find the total area of the two regions bounded by the curve and the x-axis.

