Binomial expansion formula

The Binomial Expansion formula

Formulae to remember:

    {\left( {1 + a} \right)^n} \equiv 1 + na + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{a^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{a^3} + ...

    is an alternative to using

    {\left( {a + b} \right)^n} \equiv {}^n{C_0}{a^n}{b^0} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + ... + {}^n{C_n}{a^0}{b^n}

In the tutorial I explain why and when I prefer to use one formula or method over the other.




2018-08-07T15:07:12+00:00
This website uses cookies and third party services. Settings Ok