Integrals of sin x, cos x, sec² x

In this video, I show you how to integrate functions of the form sin x, cos x, and sec² x.

Formulae to remember:

  • \int{\sin x} \text{ } dx = - \cos x + c
  • \int{\cos x} \text{ } dx = \sin x + c
  • \int{\sec^2 x} \text{ } dx = \tan x + c
  • \text{where } c \text{ is a constant.}

I show you how to integrate the following:

  1.     \[\int {{\textstyle{3 \over 7}}\sin x{\rm{ }}dx} \]

  2.     \[\int {\frac{{4{{\sec }^2}x}}{5}dx} \]

  3.     \[\int {\frac{5}{{\sec x}}{\rm{ }}dx} \]

then to try these in the video:

  1.     \[\int {{\textstyle{2 \over 7}}\sin x{\rm{ }}dx} \]

  2.     \[\int {\frac{3}{{8{\rm{cosec }}x}}dx} \]

  3.     \[\int {\frac{{ - 4\cos x}}{7}{\rm{ }}dx} \]

  4.     \[\int {\left( {3x - \frac{{{{\sec }^2}x}}{8}} \right)} {\rm{ }}dx\]

  5.     \[\int {\left( {1 + {{\tan }^2}x} \right){\rm{ }}dx} \]




2018-08-09T07:34:36+00:00
This website uses cookies and third party services. Settings Ok