In this tutorial I look at the locus of a point which satisfies the following inequalities by shading regions.

The examples used are:

Shade the regions that satisfy the following:

  1. \left| {z - \left( {2 + 3i} \right)} \right| \le 3
  2. \left| {z - 3} \right| < \left| {z - 5} \right|
  3. 0 \le \arg \left( {z - 2} \right) < \dfrac{\pi }{4}
  4. \left| {z + 1} \right| \ge \left| {z - 5} \right| , 0 \le \arg \left( {z - 1} \right) \le \dfrac{\pi }{3} , \left| {z - 4} \right| \le 4
Complex Numbers - Loci : Regions : ExamSolutions Maths Video Tutorials - youtube Video