

# Mark Scheme (Results)

January 2021

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code WST02\_01\_2101\_MS All the material in this publication is copyright © Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what

they have shown they can do rather than penalised for omissions.

- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

### **EDEXCEL IAL MATHEMATICS**

### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{will}$  be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. Ignore wrong working or incorrect statements following a correct answer.

| Question<br>Number | Scheme                                                                                                                             |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 | Marks                           |       |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|-------|
| 1(a)               | B(30, 0                                                                                                                            | .05)                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                                                                                                 | B1                              |       |
|                    |                                                                                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 | (1)   |
| (b)                | The <b>probability</b> (oe) of an <u>oyster</u> surviving/not surviving is <b>constant</b>                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | B1                                                                                              |                                 |       |
|                    |                                                                                                                                    | vival of each <u>oyster</u> is <b>indepe</b>                                                                                                                                                                                                                     | endent of the others                                                                                                                                                                                                                                                                     |                                                                                                 |                                 | (1)   |
| (c)(i)             | ${}^{30}C_{24}(0.05)^6(0.95)^{24}$ oe                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | M1                                                                                              |                                 |       |
|                    | = 0.002708 awrt 0.0027                                                                                                             |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 | A1                              |       |
| (ii)               | $P(Y \ge 3) = 1 - P(Y \le 2)$ from $Y \sim B(30, 0.05)$ or $P(X \le 27)$ from $X \sim B(30, 0.95)$                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | M1                                                                                              |                                 |       |
|                    |                                                                                                                                    | = 1 - 0.8122                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
|                    |                                                                                                                                    | = 0.1878                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          | awrt 0.188                                                                                      | A1                              |       |
| (1)                | 4 D-(                                                                                                                              | 10)                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                          |                                                                                                 | D1                              | (4)   |
| (d)                | $A \sim Po($<br>P(A > r)                                                                                                           |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 | B1                              |       |
|                    | $P(A \ge n) > 0.8$<br>$P(A \le n-1) < 0.2 \text{ or } P(A \le 6) = 0.1301awrt 0.13 \text{ or } P(A \ge 7) = 0.8699awrt 0.87$       |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 | M1                              |       |
|                    | n = 7                                                                                                                              | 1) < 0.2 of 1 (11<0) = 0.130                                                                                                                                                                                                                                     | awit 0.15 01 (127) = 0.0077a                                                                                                                                                                                                                                                             |                                                                                                 | Alcao                           |       |
|                    |                                                                                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 | IIIcuo                          | (3)   |
| (e)                | $H_0: p =$                                                                                                                         | $H_0: p = 0.05, H_1: p > 0.05$                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                          |                                                                                                 | B1                              | . ,   |
|                    | Using (                                                                                                                            | $C \sim B(25, 0.05)$ and $P(C \ge 4)$                                                                                                                                                                                                                            | Using $D \sim B(25, 0.95)$ and $P(D \le 21)$                                                                                                                                                                                                                                             |                                                                                                 | M1                              |       |
|                    | $P(C \ge C$                                                                                                                        | $P(D \le 21) = 0.0341 / CR C \ge 4$ $P(D \le 21) = 0.0341 / CR D \le 21$                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
|                    | Evidence to reject H <sub>0</sub> , in the CR, significant                                                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | dM1                                                                                             |                                 |       |
|                    | There is evidence that the proportion of <b>oysters</b> not surviving has <b>increased</b> (oe)/ <b>Jim's belief</b> is supported. |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          | Alcso                                                                                           |                                 |       |
|                    | bener n                                                                                                                            |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 | (5)   |
|                    |                                                                                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 | al 14 |
|                    | D1                                                                                                                                 |                                                                                                                                                                                                                                                                  | Notes                                                                                                                                                                                                                                                                                    |                                                                                                 |                                 |       |
| (a)<br>(b)         | B1<br>B1                                                                                                                           |                                                                                                                                                                                                                                                                  | 25 and $p = 0.05$ . Do not allow $p = 0.95$ in<br>in context. Ignore extraneous non-contrad                                                                                                                                                                                              |                                                                                                 | ts                              |       |
|                    | M1                                                                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
| (c)(i)             |                                                                                                                                    |                                                                                                                                                                                                                                                                  | $P(X \le 5)$ with one correct probability                                                                                                                                                                                                                                                |                                                                                                 |                                 |       |
| (ii)               |                                                                                                                                    | A1awrt 0.0027 (correct answer scores 2 out of 2)M1Writing/using $1 - P(Y \le 2)$ with B(30, 0.05) or writing/using $P(X \le 27)$ with B(30, 0.95)                                                                                                                |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
| (11)               |                                                                                                                                    | A1 awrt 0.188 (correct answer scores 2 out of 2)                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
| (d)                | B1                                                                                                                                 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
|                    | M1                                                                                                                                 | Allow $P(A < n) < 0.2$ or $P(A < 7) = awrt 0.13$ or $P(A > 6) = awrt 0.87$                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
|                    | 11000                                                                                                                              | n = 7 which must come from use of Po(10) or N(10, 9.5)                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                          |                                                                                                 |                                 |       |
|                    | A1cao                                                                                                                              |                                                                                                                                                                                                                                                                  | Use of normal approx. with $\mu = 10$ and $\sigma^2 = 9.5$ leading to $n < 7.4$ can score M1                                                                                                                                                                                             |                                                                                                 |                                 |       |
|                    | Note:                                                                                                                              |                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                        |                                                                                                 |                                 |       |
|                    |                                                                                                                                    | Exact binomial gives $P(A \leq 6)$                                                                                                                                                                                                                               | $= 0.14 / P(A \ge 7) = 0.86$ scores B0M0A                                                                                                                                                                                                                                                | .0                                                                                              |                                 |       |
| (e)                |                                                                                                                                    | Exact binomial gives $P(A \leq 6)$                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                        | .0                                                                                              |                                 |       |
| (e)                | Note:                                                                                                                              | Exact binomial gives $P(A \leq 6)$<br>Both hypotheses correct (allow                                                                                                                                                                                             | = 0.14 / P( $A \ge 7$ ) = 0.86 scores B0M0A<br>v use of <i>p</i> or π). Allow H <sub>0</sub> : <i>p</i> = 0.95, H                                                                                                                                                                        | $x_1 : p < 0.95$                                                                                | 0.95) and                       | d     |
| (e)                | Note:<br>B1                                                                                                                        | Exact binomial gives $P(A \leq 6)$<br>Both hypotheses correct (allow                                                                                                                                                                                             | = 0.14 / P( $A \ge 7$ ) = 0.86 scores B0M0A<br>v use of $p$ or $\pi$ ). Allow H <sub>0</sub> : $p = 0.95$ , H<br>/using P( $C \ge 4$ ) or if CR given P( $C \ge$                                                                                                                         | $x_1 : p < 0.95$                                                                                | 0.95) and                       | d     |
| (e)                | Note:<br>B1                                                                                                                        | Exact binomial gives $P(A \leq 6)$<br>Both hypotheses correct (allow<br>Using B(25, 0.05) and writing/<br>writing/using $P(D \leq 21)$ or if C<br>Correct probability to 3sf (must                                                                               | = 0.14 / P( $A \ge 7$ ) = 0.86 scores B0M0A<br>v use of $p$ or $\pi$ ). Allow H <sub>0</sub> : $p$ = 0.95, H<br>/using P( $C \ge 4$ ) or if CR given P( $C \ge$<br>CR given P( $D \le 20$ )<br>st not go on and give incorrect CR) or com-                                               | $\frac{0}{1: p < 0.95}$ 3) using B(25, 0) rrect CR (ignore                                      | e upper t                       | ail)  |
| (e)                | Note:<br>B1<br>M1                                                                                                                  | Exact binomial gives $P(A \leq 6)$<br>Both hypotheses correct (allow<br>Using B(25, 0.05) and writing/<br>writing/using $P(D \leq 21)$ or if C<br>Correct probability to 3sf (must<br>(dep on 1 <sup>st</sup> M1) A correct non-                                 | = 0.14 / P( $A \ge 7$ ) = 0.86 scores B0M0A<br>v use of $p$ or $\pi$ ). Allow H <sub>0</sub> : $p$ = 0.95, H<br>/using P( $C \ge 4$ ) or if CR given P( $C \ge$<br>CR given P( $D \le 20$ )<br>st not go on and give incorrect CR) or con-<br>contextual statement (do not allow contri- | $\frac{0}{1: p < 0.95}$ 3) using B(25, 0) rrect CR (ignore adjustment)                          | e upper t<br>ntextual           | ail)  |
| (e)                | Note:<br>B1<br>M1<br>A1                                                                                                            | Exact binomial gives $P(A \leq 6)$<br>Both hypotheses correct (allow<br>Using B(25, 0.05) and writing/<br>writing/using $P(D \leq 21)$ or if C<br>Correct probability to 3sf (mus<br>(dep on 1 <sup>st</sup> M1) A correct non-<br>comments) which is consistent | = 0.14 / P( $A \ge 7$ ) = 0.86 scores B0M0A<br>v use of $p$ or $\pi$ ). Allow H <sub>0</sub> : $p$ = 0.95, H<br>/using P( $C \ge 4$ ) or if CR given P( $C \ge$<br>CR given P( $D \le 20$ )<br>st not go on and give incorrect CR) or com-                                               | $\frac{0}{1: p < 0.95}$ 3) using B(25, 0)<br>rrect CR (ignore adicting non-co nay be implied 1) | e upper t<br>ntextual<br>by A1) | ail)  |

| Scheme                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks                                                   |                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| 1-F(3.5                                                                                                                                                  | ) = 1 - 0.97127                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                                      |                                                         |
|                                                                                                                                                          | = 0.028727                                                                                                                    | awrt 0.0287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1                                                      |                                                         |
|                                                                                                                                                          |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | (2)                                                     |
| $W \sim B(3)$                                                                                                                                            | 30,"0.0287")                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                                      |                                                         |
| $1 - P(W \le 1) = 1 - \left( \left( 1 - "0.0287" \right)^{30} + {}^{30}C_1 \left( "0.0287" \right)^1 \left( 1 - "0.0287" \right)^{29} \right) \text{oe}$ |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                                      |                                                         |
|                                                                                                                                                          | $= 1 - 0.78748 \dots = 0.2125\dots$ awrt 0.213 to                                                                             | o awrt 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1                                                      |                                                         |
|                                                                                                                                                          |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | (3)                                                     |
| $\frac{\mathrm{d}\mathbf{F}(w)}{\mathrm{d}w} =$                                                                                                          | $=\frac{1}{3}\left(1-\frac{w^3}{64}\right)$                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                                      |                                                         |
| $E(W^2) = \int_0^4 \frac{1}{3} \left( w^2 - \frac{w^5}{64} \right) dw = \frac{1}{3} \left[ \frac{w^3}{3} - \frac{w^6}{384} \right]_0^4$                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dM1                                                     |                                                         |
|                                                                                                                                                          | $=\frac{32}{9}$                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                                                      |                                                         |
| $\operatorname{Var}(W) = \frac{32}{9} - 1.6^2$                                                                                                           |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                                                      |                                                         |
| $=\frac{224}{225}$                                                                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A1                                                      |                                                         |
|                                                                                                                                                          |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total                                                   | (5)<br>10                                               |
|                                                                                                                                                          | Notes                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total                                                   | 10                                                      |
| M1                                                                                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
| A1                                                                                                                                                       | awrt 0.0287                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
| Eor writing or using B(30 "0.0287") allow $n("\text{their } 0.0287")^1(1-"\text{their } 0.0287")$                                                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87") <sup>29</sup>                                      |                                                         |
|                                                                                                                                                          |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
|                                                                                                                                                          |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
| <b>M1</b>                                                                                                                                                | For $1 - ((1 - 0.0287))^{30} + {}^{30}C_1(0.0287)^{30}(1 - 0.0287)^{30})$ Alle                                                | $50^{50}C_{29}$ in an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y form                                                  |                                                         |
| A1                                                                                                                                                       | allow answer in the range awrt 0.213 to awrt 0.216                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
| M1                                                                                                                                                       | Differentiating $F(w)$ at least one term correct                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
| (Dep on previous M1). Attempting to integrate expanded $w^2 f(w)$ . At least one $w^n \to w^{n-1}$                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $w^{n+1}$                                               |                                                         |
| A1                                                                                                                                                       |                                                                                                                               | embedded)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                         |
| M1                                                                                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                       |                                                         |
| A1 Dependent upon 2 <sup>nd</sup> M1 awrt 0.996                                                                                                          |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
| (A correct answer with no algebraic integration seen may score M1M0A0M1A0)                                                                               |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                         |
|                                                                                                                                                          | $W \sim B(3) = 0$ $1 - P(W) = 0$ $E(W^{2}) = 0$ $Var(W) = 0$ $M1$ $A1$ $M1$ $M1$ $M1$ $A1$ $M1$ $M1$ $A1$ $M1$ $M1$ $M1$ $M1$ | $W \sim B(30, "0.0287")$ $1 - P(W \le 1) = 1 - \left( \left(1 - "0.0287"\right)^{30} + {}^{30}C_1 \left("0.0287"\right)^1 \left(1 - "0.0287"\right)^{29} \right) \text{ oe}$ $= 1 - 0.78748 \dots = 0.2125 \dots \text{ awrt } 0.213 \text{ tr}$ $\frac{dF(w)}{dw} = \frac{1}{3} \left(1 - \frac{w^3}{64}\right)$ $E(W^2) = \int_0^4 \frac{1}{3} \left(w^2 - \frac{w^5}{64}\right) dw = \frac{1}{3} \left[\frac{w^3}{3} - \frac{w^6}{384}\right]_0^4$ $= \frac{32}{9}$ $Var(W) = \frac{32}{9} - 1.6^2$ $= \frac{224}{225}$ $M1  \text{For writing or using } 1 - F(3.5) \text{ Implied by correct answer}$ $A1  \text{awrt } 0.0287$ $M1  \text{For writing or using } B(30, "0.0287") \text{ allow } n("\text{ their } 0.0287")^1 (\text{ ignore any number for } n \text{ (allow their } p \text{ to } 2sf)$ $M1  \text{For writing or using } B(30, "0.0287")^1 (1 - "0.0287")^{29} \text{ All } d$ $A1  \text{allow answer in the range awrt } 0.213 \text{ to awrt } 0.216$ $M1  \text{Differentiating } F(w) \text{ at least one term correct}$ $(Dep on previous M1). \text{ Attempting to integrate expanded } w^2f(w) \text{ Ignore limits for this M mark.}$ $A1  \text{awrt } 3.56  must come from correct algebraic integration (may be M1) Use of correct formula with values substituted. Must see the substituted.$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

| Question<br>Number | Ncheme                                                                                                                  |                                                                                                                                                   |                  |             |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|--|--|
| 3(a)               | $P(X \neq 4)$                                                                                                           | $(=1-P(X = 4) \text{ oe} \left(=1-\frac{e^{-7}7^4}{4!} \text{ or } 1-(0.1730-0.0818)\right)$                                                      |                  | M1          |  |  |
|                    |                                                                                                                         | = 0.90877                                                                                                                                         | awrt 0.909       | A1          |  |  |
|                    |                                                                                                                         |                                                                                                                                                   |                  | (2          |  |  |
| (b)                | P(Y=1)                                                                                                                  | $=(1-"0.90877")("0.90877")^4 \times {}^5C_1$                                                                                                      |                  | M1M1        |  |  |
|                    | = 0.311                                                                                                                 |                                                                                                                                                   |                  | A1          |  |  |
|                    |                                                                                                                         |                                                                                                                                                   |                  | (3          |  |  |
| (c)(i)             | $\lambda = 0.0$                                                                                                         | 7n                                                                                                                                                |                  | B1          |  |  |
|                    |                                                                                                                         | 07 <i>n</i> , 0.07 <i>n</i> )                                                                                                                     |                  | M1          |  |  |
|                    | $\frac{3.5 - "0.07}{2}$                                                                                                 |                                                                                                                                                   |                  | M1          |  |  |
|                    | $\sqrt[-]{0.07n}$                                                                                                       |                                                                                                                                                   |                  |             |  |  |
|                    | $\frac{5.5-0.0}{\sqrt{0.07n}}$                                                                                          | $\frac{7n}{2} = -1.55  \text{or}  "0.07n" - (1.55\sqrt{0.07})\sqrt{n} - 3.5 = 0$                                                                  |                  | B1          |  |  |
|                    | $n - \left(\frac{1.52}{0.0}\right)$                                                                                     | $\frac{5}{7}\sqrt{0.07}\left(\sqrt{n} - \frac{3.5}{0.07}\right) = 0 \Longrightarrow n - 1.55\sqrt{\frac{n}{0.07}} - 50 = 0$                       |                  | Alcso       |  |  |
|                    |                                                                                                                         |                                                                                                                                                   |                  | (5          |  |  |
|                    | 1.5                                                                                                                     | $(5, 1.55)^2$                                                                                                                                     |                  |             |  |  |
| (ii)               | $\sqrt{n} = \frac{\sqrt{0}}{\sqrt{0}}$                                                                                  | $\frac{\frac{35}{07} \pm \sqrt{\left(\frac{1.55}{\sqrt{0.07}}\right)^2 + 4 \times 50}}{2} = \text{awrt} - 4.72 \text{ or awrt } 10.6 (4\sqrt{7})$ |                  | M1          |  |  |
|                    | <i>n</i> = 112                                                                                                          |                                                                                                                                                   |                  | Alcao       |  |  |
|                    |                                                                                                                         |                                                                                                                                                   |                  | (2          |  |  |
| (d)                | $H_0: \lambda =$                                                                                                        | $= 7  H_1: \lambda > 7$                                                                                                                           |                  | B1          |  |  |
|                    | $P(X \ge 1)$                                                                                                            | $P(X \ge 14) \qquad P(X \ge 14) = 0.0128$                                                                                                         |                  | M1          |  |  |
|                    |                                                                                                                         | $= 1 - 0.9943 \qquad P(X \ge 15) = 0.0057$                                                                                                        |                  |             |  |  |
|                    |                                                                                                                         | $= 0.0057$ CR $X \ge 15$                                                                                                                          |                  | A1          |  |  |
|                    | Reject H                                                                                                                | Reject H <sub>0</sub> , in the CR, Significant                                                                                                    |                  |             |  |  |
|                    | There is                                                                                                                | evidence that the number of water <b>fleas</b> per 100 ml of the pond water has                                                                   | increased        | A1          |  |  |
|                    |                                                                                                                         |                                                                                                                                                   |                  | (5          |  |  |
|                    |                                                                                                                         | Notos                                                                                                                                             |                  | Total 1     |  |  |
| (a)                | M1                                                                                                                      | Notes           For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe                                                                            |                  |             |  |  |
| (a)                |                                                                                                                         |                                                                                                                                                   | 1                |             |  |  |
| (b)                | MI                                                                                                                      | M1 $(1 - "their 0.909")^4$ ("their 0.909") or $(1 - "their 0.909")$ ("their 0.909") <sup>4</sup> allow their values to 2s.f.                      |                  |             |  |  |
|                    | M1                                                                                                                      |                                                                                                                                                   |                  |             |  |  |
| (-)(')             | A1<br>D1                                                                                                                | awrt 0.312 or awrt 0.311                                                                                                                          |                  |             |  |  |
| (c)(i)             | B1<br>M1                                                                                                                | Writing or using mean as $0.07n$<br>Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by                         | ov correct stand | ardisation) |  |  |
|                    | M1<br>M1                                                                                                                | Standardising with their mean and their $\sqrt{var}$ . If not stated they must be correct. Allow 2.5, 3, 3.5,4, 4.5 (A                            |                  |             |  |  |
|                    |                                                                                                                         | correct standardisation implies B1M1M1)                                                                                                           |                  |             |  |  |
|                    | B1                                                                                                                      | Their standardisation = $\pm 1.55$                                                                                                                |                  |             |  |  |
|                    | A1cso                                                                                                                   | Must come from compatible signs in standardisation. Need at least one step betw                                                                   | veen standardis  | ation       |  |  |
| (ii)               | M1                                                                                                                      | indicating division by 0.07 and correct equation.<br>Correct method to solve <b>given</b> quadratic <u>or</u> sight of awrt –4.72 or awrt 10.6    |                  |             |  |  |
| (11)               | A1cao                                                                                                                   | 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A)                                                                     | 1)               |             |  |  |
| (d)                | B1                                                                                                                      |                                                                                                                                                   |                  |             |  |  |
|                    | <b>M1</b> For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.0057$                      |                                                                                                                                                   |                  |             |  |  |
|                    | A1 awrt 0.0057 or correct CR allow $X > 14$                                                                             |                                                                                                                                                   |                  |             |  |  |
|                    | dM1 (dep on 1 <sup>st</sup> M1) A correct non-contextual statement (do not allow contradicting non-contextual comments) |                                                                                                                                                   |                  |             |  |  |
|                    |                                                                                                                         | divid which is consistent with their prob and 0.01. (If not stated, may be implied by A1)                                                         |                  |             |  |  |
|                    | A1                                                                                                                      | All previous marks must be awarded. Correct context. conclusion with increase(                                                                    | oe) and fleas    |             |  |  |

| Question<br>Number |                                                                                                                                                                         | Scheme                                                                                                                                                             |                                                                           | Marks           |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|
| 4(a)               |                                                                                                                                                                         | $(x)^{2} dx = \left[ k \left( a^{2}x - ax^{2} + \frac{x^{3}}{3} \right) \right]_{0}^{a} \text{ or } \left[ \frac{-k(a-x)^{3}}{3} \right]_{0}^{a}$                  | $\begin{bmatrix} a \\ b \end{bmatrix}_0^a$                                | M1 A1           |
|                    | $k\left(a^3-a^3-a^3-a^3-a^3-a^3-a^3-a^3-a^3-a^3-$                                                                                                                       | $a^3 + \frac{a^3}{3} = 1$ or $\frac{ka^3}{3} = 1 \implies ka^3 = 3$                                                                                                |                                                                           | A1 cso          |
|                    |                                                                                                                                                                         |                                                                                                                                                                    |                                                                           | (3)             |
| (b)                | $\int_0^a kx (a \cdot$                                                                                                                                                  | $(-x)^{2} dx = \left[ k \left( \frac{a^{2}x^{2}}{2} - \frac{2ax^{3}}{3} + \frac{x^{4}}{4} \right) \right]_{0}^{a} \text{ or } \left[ \frac{-k}{2} \right]_{0}^{a}$ | $\frac{x(a-x)^{3}}{3} + \frac{k(a-x)^{4}}{12} \bigg]_{0}^{a}$             | M1A1            |
|                    | $k\left(\frac{a^2a^2}{2}\right)$                                                                                                                                        | $-\frac{2aa^3}{3} + \frac{a^4}{4} = 1.5$ or $\left[\frac{ka(a)^3}{3} - \frac{k(a)^4}{12}\right]_0^a = 1$                                                           | 1.5 or $ka^4 = 18$ oe                                                     | dM1             |
|                    | $\frac{ka^4}{ka^3} = 6$ or $\frac{18}{3} = 6$ [ $\therefore a = 6$ ]                                                                                                    |                                                                                                                                                                    |                                                                           | A1cso           |
|                    |                                                                                                                                                                         |                                                                                                                                                                    | -                                                                         | (4)             |
| (c)                | F(x) =                                                                                                                                                                  | $\frac{1}{72} \left( 36x - 6x^2 + \frac{x^3}{3} \right)$                                                                                                           | $\frac{1}{72} \left( 36x - 6x^2 + \frac{x^3}{3} \right) = 0.5 \text{ oe}$ | M1              |
|                    | F(1.15)(                                                                                                                                                                | = 0.47) and $F(1.25) (= 0.5038)$                                                                                                                                   | 1.2377                                                                    | M1              |
|                    | F(1.15)<br>(0.47(18                                                                                                                                                     | = awrt 0.47, $F(1.25) = awrt 0.504$<br>S) < 0.5 < 0.503(8) therefore the<br>is <b>1.2</b> to 1 decimal place.                                                      | therefore the median is <b>1.2</b> to 1 decimal place.                    | A1              |
|                    |                                                                                                                                                                         |                                                                                                                                                                    |                                                                           | (3)             |
|                    |                                                                                                                                                                         |                                                                                                                                                                    |                                                                           | Total 10        |
|                    |                                                                                                                                                                         | Notes                                                                                                                                                              |                                                                           |                 |
| (a)                | M1                                                                                                                                                                      | Integrating $f(x)$ at least 1 term correct. For M                                                                                                                  | 11 allow $\frac{\pm k(a-x)^3}{3}$                                         |                 |
|                    | A1                                                                                                                                                                      | Correct integration (ignore limits)                                                                                                                                |                                                                           |                 |
|                    | A1cso                                                                                                                                                                   | Substitute limits and equating to 1 to form one                                                                                                                    |                                                                           | g to $ka^3 = 3$ |
| (b)                | M1                                                                                                                                                                      | Indicating that they are integrating $xf(x)$ with an attempt at integrating $x^n \rightarrow x^{n+1}$                                                              |                                                                           |                 |
|                    | A1                                                                                                                                                                      | Correct integration<br>(dop on providus M1). Substitute limits and equating to 1.5 to form a 2 <sup>nd</sup> expression                                            |                                                                           |                 |
|                    | dM1                                                                                                                                                                     | (dep on previous M1). Substitute limits and equating to 1.5 to form a $2^{nd}$ expression in $k$ and $a$                                                           |                                                                           |                 |
|                    | A1cso                                                                                                                                                                   | Correct method shown to solve their 2 equation                                                                                                                     | ns to eliminate $k$ and show $a=6$                                        |                 |
| (c)                | M1                                                                                                                                                                      | Finding correct F(x). Allow F(x) = $1 - \frac{(6-x)^3}{216}$ but F(x) = $\frac{(6-x)^3}{216}$ is M0                                                                |                                                                           |                 |
|                    | Allow in terms of k for this markM1For attempting their F(1.15) and their F(1.25) or a suitable tighter interval or for 'solving' cubic<br>leading to a value awrt 1.24 |                                                                                                                                                                    |                                                                           |                 |
|                    | A1                                                                                                                                                                      | Both correct values and correct conclusion (all (allow $x = 1.2$ ).<br>Allow change of sign argument if they have su                                               |                                                                           |                 |
|                    |                                                                                                                                                                         |                                                                                                                                                                    |                                                                           |                 |

| Question<br>Number |                                                                                                     | Scheme                                                                   |                                                                    | Marks         |  |
|--------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|--|
| 5(a)               | U[0, 3]                                                                                             | ]                                                                        |                                                                    | M1            |  |
|                    | $\frac{3-1.8}{3} = 0.4$                                                                             |                                                                          |                                                                    | A1            |  |
|                    |                                                                                                     |                                                                          |                                                                    | (2)           |  |
| (b)                |                                                                                                     | $(3-W)^2$                                                                |                                                                    | M1            |  |
|                    | $X^{2} = W^{2} + 9 + W^{2} - 6W \implies X^{2} = 2W^{2} - 6W + 9$                                   |                                                                          |                                                                    | A1            |  |
|                    |                                                                                                     |                                                                          |                                                                    | (2)           |  |
| (c)                | $\mathbf{E}(W) = 1$                                                                                 |                                                                          |                                                                    | B1            |  |
|                    | Var(W) =                                                                                            | $=\frac{3}{12}=\frac{3}{4}$                                              |                                                                    | B1            |  |
|                    | $E(W^2) =$                                                                                          | $= \frac{9}{12} = \frac{3}{4}$<br>" $\frac{3}{4}$ " + "1.5" <sup>2</sup> |                                                                    | M1            |  |
|                    | $E(W^2) =$                                                                                          |                                                                          |                                                                    | A1            |  |
|                    | So $E(X^2) = 2 \times "3" - 6 \times "1.5" + 9 = 6$                                                 |                                                                          |                                                                    |               |  |
|                    |                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                    |                                                                    | (6)           |  |
| (d)                | $P(X^{2} > 5) = P(2W^{2} - 6W + 4 > 0)$                                                             |                                                                          |                                                                    | M1            |  |
|                    | = P((2W-2)(W-2) > 0)                                                                                |                                                                          |                                                                    | M1            |  |
|                    | = P(W > 2) + P(W < 1)                                                                               |                                                                          |                                                                    |               |  |
|                    | $=\frac{2}{3}$ oe                                                                                   |                                                                          |                                                                    |               |  |
|                    |                                                                                                     |                                                                          |                                                                    |               |  |
|                    | Notes                                                                                               |                                                                          |                                                                    |               |  |
| (a)                | M1                                                                                                  | Writing or using the correct distribution                                | 1.9                                                                |               |  |
|                    | A1                                                                                                  | 0.4 oe                                                                   | 3                                                                  |               |  |
| (b)                | M1                                                                                                  | Using Pythagoras to find the length                                      | Note: $X^2 = W^2 + (W - 3)^2$ scores M1A0                          |               |  |
|                    | A1                                                                                                  |                                                                          |                                                                    |               |  |
| (c)                | <b>B1</b>                                                                                           | 1.5                                                                      |                                                                    |               |  |
|                    | B1                                                                                                  | Var(W) = 0.75                                                            | Using integration: $E(W^2) = \int_{0}^{3} \frac{1}{3} w^2 dw$ (ig  | gnore limits) |  |
|                    | M1                                                                                                  | Writing or using<br>$E(W^2) = Var(W) + [E(W)]^2$                         | $\left[\frac{1}{9}w^3\right]_0^3$ (correct integration with correc | t limits)     |  |
|                    | A1                                                                                                  | 1 3                                                                      |                                                                    |               |  |
|                    | M1 Use of $E(X^2) = 2E(W^2) - 6E(W) + 9$ with their values.                                         |                                                                          |                                                                    |               |  |
|                    | A1                                                                                                  | 6 An answer of 6 from correct work                                       |                                                                    |               |  |
| (d)                | <b>M1</b> For realising they need to find the probability of $2W^2 - 6W + 4 > 0$ (condone =)        |                                                                          |                                                                    |               |  |
|                    | <b>M1</b> Solving their 3-term quadratic ( $W = 1$ and $W = 2$ implies 1 <sup>st</sup> two M marks) |                                                                          |                                                                    |               |  |
|                    | dM1 (dep on 2 <sup>nd</sup> M1) Realising they need to add the 2 outer areas                        |                                                                          |                                                                    |               |  |
|                    | A1                                                                                                  | awrt 0.667                                                               |                                                                    |               |  |

| Question<br>Number | Scheme                                                                                               |                                                                                                                           |           |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
| 6(a)               | Taking a random sample is quicker/cheaper/easier (compared to asking all of the youth club members). |                                                                                                                           |           |  |  |  |  |
| ( <b>b</b> )       | A list/mas                                                                                           | sister/detabase of all the youth alub members                                                                             | (1)<br>B1 |  |  |  |  |
| (b)                | A <u>list/reg</u>                                                                                    | A <u>list/register/database</u> of <u>all</u> the youth club <u>members</u>                                               |           |  |  |  |  |
| (c)                | The mem                                                                                              | The <u>members</u>                                                                                                        |           |  |  |  |  |
|                    |                                                                                                      |                                                                                                                           | (1)       |  |  |  |  |
| (d)                | $p^2 = \frac{25}{64}$ $p = \frac{5}{8}$                                                              |                                                                                                                           | M1        |  |  |  |  |
|                    | $p = \frac{5}{8}$                                                                                    |                                                                                                                           | A1        |  |  |  |  |
|                    | $"\frac{5}{8}"+q+$                                                                                   | r = 1 or $2qr = \frac{1}{16}$ or $\frac{25}{64} + 2"\frac{5}{8}"q + 2"\frac{5}{8}"r + q^2 + \frac{1}{16} + r^2 = 1$       | B1        |  |  |  |  |
|                    | Any two                                                                                              | equations from above                                                                                                      | B1        |  |  |  |  |
|                    | $\frac{3}{8}q - q^2 =$                                                                               | $=\frac{1}{32}$                                                                                                           | dM1       |  |  |  |  |
|                    | $q = \frac{1}{4}$                                                                                    |                                                                                                                           | A1        |  |  |  |  |
|                    | $P(M = 50) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}  *$                                       |                                                                                                                           |           |  |  |  |  |
|                    |                                                                                                      |                                                                                                                           |           |  |  |  |  |
|                    |                                                                                                      | Notes                                                                                                                     | Total 10  |  |  |  |  |
| (a)                | B1                                                                                                   | Any one of the given reasons. Ignore extraneous non-contradictory reasons.                                                |           |  |  |  |  |
| (b)                | <b>B1</b>                                                                                            | Idea of list(oe). Need all (oe) (eg complete list) and members.                                                           |           |  |  |  |  |
| (c)                | <b>B1</b>                                                                                            | The members/a member                                                                                                      |           |  |  |  |  |
| (d)                | M1 Correct method, may be implied                                                                    |                                                                                                                           |           |  |  |  |  |
| ()                 | A1                                                                                                   | 5 5                                                                                                                       |           |  |  |  |  |
|                    | B1                                                                                                   | One equation in q and r from use of $p + q + r = 1$ , $P(M = 60)$ or $\sum P(M=m) = 1$ see (allow ft on their value of p) |           |  |  |  |  |
|                    | B1                                                                                                   | Two correct equations in $q$ and $r$ Some will substitute directly into the third equation so may                         |           |  |  |  |  |
|                    | dM1                                                                                                  | (dep on $1^{st}$ B1) Correct method to solve simultaneous equation leading to a probability for $q$ or                    |           |  |  |  |  |
|                    | A1                                                                                                   | Correct probability for $q$ (dependent on all previous marks in part (d))                                                 |           |  |  |  |  |
|                    | A1cso*                                                                                               |                                                                                                                           |           |  |  |  |  |
|                    | Note:                                                                                                | m 20 35 45 50 60 70                                                                                                       |           |  |  |  |  |
|                    |                                                                                                      | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                    |           |  |  |  |  |
|                    |                                                                                                      | $\frac{25}{64} + 2pq + 2pr + q^2 + \frac{1}{16} + r^2 = 1$                                                                |           |  |  |  |  |