

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Level In Statistics 1 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WST03_01_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply
 the mark scheme but believe the method to be correct then please send
 to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme	Marks
1. (a)	[In QP: 33, 15, 23] 29, 34, 39, 06, 31, 13, 42	M1A1
		(2)
(b)	This will give 4 girls with numbers 15, 23, 06, 13	B1
, ,	This will give 6 boys with numbers 33, 29, 34, 39, 31, 42	B1
		(2)
(c)	Since the highest number is 42	M1
	therefore may miss <u>older players</u>	A1
		(2)
		[6 marks]
	Notes	
(a)	M1 for 7 numbers (at least 4 correct in any order)	1.5.00.01
	(Condone repeats but only count once towards the "4") e.g. <u>29</u> , 33, <u>34</u> , <u>39</u> ,	
	The 33 and 15 are repeats of those in QP and 29 is a repeat but all will cou	
	This will score M1 as there are 4 of the correct numbers listed: 29, 34, 39	and 31
	A1 for all 7 correct with no repeats	
(b)	1 st B1 for showing the 4 girls in sample (No ft for incorrect random numbers)	
(6)	2 nd B1 for showing the 6 boys in the sample (No ft for incorrect random numbers)	ra)
	2 B1 for showing the 6 boys in the sample (No it for incorrect random number	18)
(c)	M1 for mention of highest number of 42 (or ft their highest number as long as	< 60)
	A1 for stating that this means older players may be missing from the sample	ĺ
	This can be awarded if their highest number is stated for M1 and is < 42	

Question Number				S	Schen	1e							Marks
	Student	A	В	C	D	Е	F	G	Н	I	J	K	
2. (a)	Objects rank	9	6	8	2	1	10	7	3	5	4	11	M1
(0)	Maths rank	11	4	5	1	2	9	3	7	8	6	10	M1
	$\sum d^2 = 4 + 4 + 9 + 4 + 9 + 4 + 4 + 9 + 4 + 4 +$			6+16		-4+1	= 66						M1 dM1; A1
(b)	$H_0: \rho = 0$ $H_1: \rho > 0$ Critical value $(n = 11)$ (Significant result so	5%		,			ort th	e teac	cher's	s belie	ef		(5) B1 B1
	or there is evidence of mathematical ability or evidence that student memory (o.e.)	(o.e.	.)										B1
(c)	Data shows positive short term memory <u>c</u>							•		that e	enhan	ced	(3) B1 (1)
													[9 marks]
(a)	1St M1 for attampt to	0 400	lr omo		Not		nt 5 o	0 mm 0 o d	+ (2011	ld ba	*****	uad)	
(a)	1 st M1 for attempt to 2 nd M1 for both row												versed)
	3 rd M1 for an attempt		_										
	4 th dM1 (dep on at le	east o	ne M	(1) fo	or use	of th	eir \sum	$\int d^2$ i	n a c	orrect	form	ıula	
	A1 for 0.7 or exa	act eq	quival	ent									
(b)	1 st B1 for both hypo 2 nd B1 for critical va Allow 0.6182	lue o	of 0.53	364 (sign c	ompa							
	3 rd B1 for correct co significant so								dicto	ry coi	nmer	its e.g.	"not
(c)	B1 for a comment Need to see "ca									<u>causa</u>	<u>ation</u>		

 3. (a) All expected frequencies are (88÷4) = 22 Degrees of freedom = 3, so critical value χ₃²(5%) = 7.815 (Not significant so) insufficient evidence to suggest not uniformly distributed (b) e.g. H₀: School is independent of club chosen H₁: Club chosen depends on which school a student is from 	B1 B1, B1ft B1 (4)
Degrees of freedom = 3, so critical value $\chi_3^2(5\%) = 7.815$ (Not significant so) insufficient evidence to suggest <u>not</u> uniformly distributed (b) e.g. H ₀ : School is independent of club chosen	B1
(Not significant so) insufficient evidence to suggest <u>not</u> uniformly distributed (b) e.g. H ₀ : School is independent of club chosen	B1
e.g. H ₀ : School is independent of club chosen	(4)
(N) ²	
(N) ²	D 1
	B1
	(1)
28×17 5 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B1
(c) $\frac{28 \times 17}{88} = 5.409$ awrt <u>5.41</u>	B1
	(1)
(d) Expected frequency for Music and School $C = 4.77 < 5$ (Allow $\frac{105}{22}$ for 4.77)	B1
So combine Music column with another column giving 3x3 table so 4 df	B1 (2)
(e) Critical value $\chi_4^2(5\%) = 9.488$	B1
[Not significant so] insufficient evidence of an association	D1
between school and choice of club	B1
	(2)
	[10 marks]
Notes Ignore values of any test statistics calculated in (a) or (e)	
(a) 1st B1 for 22 2nd B1 for degrees of freedom = 3 (can be implied by sight of 7.815 as cv) 3rd B1ft for 7.815 (or better - cal: 7.814727910 or correct 5% cv for their 4th B1 for comment suggesting uniform distribution is a suitable model. Must follow from comparing 6.09 with their cv. Do not allow contradictory statements e.g. "significant" so uniform of	
(b) B1 for both hypotheses with some context ("club" and "school" mentioned a Use of "independence" or "association"	t least once)
(c) B1 for a correct expression or awrt 5.41 (allow $\frac{119}{22}$)	
(d) 1^{st} B1 for identifying that Music & School C has E_i that is < 5 (a value to 2 sf should be seen, may be in (c), but must state this E_i < 5 2^{nd} B1 for pooling music with another column leading to 3x3 table and 4 degree Must clearly state the pooling and evidence for 4 df e.g. allow $(3-1)\times$	ees of freedom
[NB pooling with Art gives 4.3987, with Sports 4.3247, with Comp	iters 7.2879]
(e) 1st B1 for 9.488 (or awrt 9.488) 2nd B1 for a correct, not significant, conclusion mentioning school and clubs	

Question Number	Scheme	Marks
4. (a)	Use of $\overline{x} \pm z \times \frac{18}{\sqrt{25}}$; $z = 2.3263$ (or better)	M1;B1
	= (44.0253, 60.7746) awrt $(44.0, 60.8)$	A1, A1 (4)
(b)	$H_0: \mu_A = \mu_B \qquad H_1: \mu_B > \mu_A$	B1
	$z = (\pm) \frac{57.8 - 52.4}{18\sqrt{\frac{1}{25} + \frac{1}{30}}}$	M1dM1
	= (+) 1.1078 awrt (+) 1.11 5% one-tail critical value is 1.6449 (or <i>p</i> -value = 0.13396 i.e. awrt 0.134) (not sig') so insufficient evidence (in these data) to support newspaper's claim	A1 B1 A1
(c)	$\overline{x} - \mu$ Require $\overline{x} - \mu$ where $z = 1.6440$ (e.e.)	(6) M1
(6)	Require $\frac{\overline{x} - \mu}{\frac{18}{\sqrt{n}}} > z$ where $z = -1.6449$ (o.e.)	IVII
	$\mu < 52.4 + 1.64(49) \times \frac{18}{5}$ or $\mu < 57.8 + 1.64(49) \times \frac{18}{\sqrt{30}}$	A1
	i.e. $\mu < 58.3216$ and $\mu < 63.2056$	M1
	So $\mu = 58.3$	A1 (4)
	Natas	[14 marks]
(a)	Notes M1 for use of correct expression with 18, 25 and $1 < z < 3$ (Ignore \overline{x} for this ma	nrk)
	B1 for $z = 2.3263$ or better (calc: 2.32634787) 1 st A1 for awrt 44.0 (ans only of 44.02or awrt 44.03 scores M1B1 implied) 2 nd A1 for awrt 60.8 (ans only of 60.77 or awrt 60.77 scores M1B1 implied)	
(b)	1 st B1 for both hypotheses in terms of μ s (If using μ_1 etc they must define which 1 st M1 for a correct denominator (18 needn't be outside square root) [4.87(44	
	2 nd dM1 for a correct expression for test statistic 1 st A1 for awrt (+) 1.11	
	2 nd B1 for critical value of 1.6449 or better (If B0 in (a) for 2.33 allow 1.64 or 1 [Allow <i>p</i> -value of awrt 0.134 and condone awrt 0.866 if compared with 0.134 and 0.134 an	,
	2 nd A1 Correct contextual conclusion, ft comparing their "1.11" with 1.64 (or the must be not significant and mention "claim" or "score in town <i>A</i> " and "score in to	
(c)	1 st M1 for a correct starting <u>inequality</u> with any z such that $ z > 1$ (Allow \ge)	
	1 st A1 for either correct <u>inequality</u> for μ , allow $z = 1.64$ or better 2 nd M1 for both cases of $\overline{x} + z \frac{18}{\sqrt{n}}$ ($z > 1$) can allow "=" or inequality, may be in C	CI
	2 nd A1 (dep on both Ms) for sight of both awrt 58.3 and awrt 63.2 and selecting	awrt 58.3

Question Number	Scheme	Marks						
5. (a)	N							
	H_1 : N(6,0.75 ²) is NOT a suitable model for the lengths of the pine cones							
	e.g. E_i : $5 \le x < 5.5 = 80 \times P(5 \le X < 5.5) = 80 \times P(-\frac{4}{3} \le Z < -\frac{2}{3}) [= 12.77 \sim 12.90]$							
	or E_i : $6 \le x < 6.5 = 80 \times P(0 \le Z < \frac{2}{3}) [= 19.80 \sim 19.89]$							
	$E_i: 5.5 \leqslant x < 6 = 19.80 \sim 19.89$ or $x \geqslant 6.5 = 40 - "19.80" = 20.11 \sim 20.20$							
	$x < 5$ $5 \le x < 5.5$ $5.5 \le x < 6$ $6 \le x < 6.5$ $x \ge 6.5$							
	E_i 7.30~7.43 12.77~12.90 19.80~19.89 19.80~19.89 20.11~20.20	A1						
	$\frac{(O-E)^2}{E}$ 0.23~0.28 0.093~0.12 0.84~0.90 1.87~1.95 5.08~5.16							
	$\sum \frac{\left(O_i - E_i\right)^2}{E_i} \text{ or } \sum \frac{O_i^2}{E_i} - 80 = 8.308 ; \text{ answer in } [8.15 \sim 8.4]$ dM1; A1							
	$v = 5 - 1 = 4 \implies; \chi_4^2(10\%) = 7.779$	B1; B1ft						
	(significant result so) the data do not support Chrystal's belief	A1ft						
	464 2 2722.59 - 80 × "5.8 ² "	(10)						
(b)	$\hat{\mu} = \frac{464}{80} = \underline{5.8} \text{ (cm)}; s^2 = \frac{2722.59 - 80 \times "5.8^2"}{79}$	B1; M1						
	$s^2 = 0.39734 \text{ awrt } \underline{\textbf{0.397}} \text{ (cm}^2)$	A1 (2)						
(c)	$v = 5 - 3 = 2$; so $\chi_2^2(10\%) = 4.605$	(3) B1; B1ft						
	$v = 5 - 3 = 2$; so $\chi_2^{-1}(10\%) = 4.605$ (Not sig') so a normal distribution is a plausible model for length of pine cones							
		(3)						
(d)	$P(X > 7 \mid \mu = 5.8 \text{ and } s = \sigma = 0.63035) = P\left(Z > \frac{7 - 5.8}{\sqrt{0.397}}\right) = P(Z > 1.90)$							
	= <u>0.028~0.029</u>	A1 (2) [18m'ks]						
(a)	Notes 1st B1 for both hypotheses. Must include the model and mention "length(s)" and	"aanas"						
(a)	1 st M1 for correct use of normal to find E_i for one cell 1 to a middle value e.g. awrt 12.77~12.90 inclusive (12.77 is from tables, 1 2 nd M1 for use of symmetry to get E_i for 5.5 \leq x $<$ 6 (same as 6 \leq x $<$ 6.5) or x \geq 6 2 nd A1 for a correct set of expected frequencies (all awrt in given ranges) 3 nd M1 (dep on 1 st M1) for a correct attempt to find test statisticat least one co 3 nd A1 for answer in the range 8.15-8.4 (inclusive) 2 nd B1 for degrees of freedom = 4 3 nd B1ft for a correct 10% critical value using their degrees of freedom	2.90 calc) .5 (40 –)						
	4^{th} A1ft dep on M3 and cv = awrt 7.78 for contextual conclusion: length, cones, N (μ , σ n	ot needed) vstal's belief						
(b)	B1 for 5.8 M1 for a correct expression (ft their mean) A1 for awrt 0.397 (Condone $\frac{3139}{7900}$)							
(c)	$1^{st} B1$ for degrees of freedom = 2 $2^{nd} B1$ ft for a correct cv (different from their part (a)) ft their df $3^{rd} B1$ ft for a correct conclusion in context ft cv ("length" and "cones") Ignore are	ny μ or σ						
(d)	M1 for standardising with 7, their $5.8 \ (\neq 6)$ and their s.d. from (b). Ignore any \times A1 for a correct proportion of 0.028 or 0.029. (ISW if correct ans followed by \times							

Question Number	Scheme	Marks
6. (a)	Let $D = Y - R$ then $E(D) = -3$; $Var(D) = 0.8^2 + 1.5^2$ or 1.7^2 or 2.89	B1, M1
	$P(D>0) = P\left(Z > \frac{0-3}{1.7}\right) \text{ or } P(Z>1.7647)$	M1
	= 0.03880655 or $1 - 0.9608 = 0.0392$ awrt 0.039	A1 (4)
(b)	$\left(R_1 + R_2 + R_3\right) \sim N\left(45, \sqrt{3 \times 1.5^2}^2\right) ; 4Y \sim N\left(48, \sqrt{4^2 \times 0.8^2}^2\right)$	M1A1A1
	$L = 4Y - (R_1 + R_2 + R_3) \implies L \sim N(3, \sqrt{16.99}^2)$	M1A1
	$P(L>0) = P(Z > \frac{0-3}{\sqrt{16.99}})$ or $P(Z>0-0.7278)$ [use 0 – 0.73 in tables]	dM1
	= awrt <u>0.767</u>	A1 (7)
(c)	E(X) = 780 gives $15a + 12b = 780[Var(X) =] 1.5^2 \times a^2 + 0.8^2 \times b^2$	M1A1 M1
	Sub for a: $Var(X) = 2.25(52 - 0.8b)^2 + 0.64 \times b^2$ or $2.08b^2 - 187.2b + 6084$	M1
	$\frac{d}{db}[Var(X)] = 0 \implies 4.16b - 187.2 = 0$	M1
	So $a = 52 - 0.8 \times 45 = 52 - 36$ $\underline{a = 16}$	A1 A1 (7)
		[18 marks]
(a)	Notes B1 for $E(D) = -3$ (or $+3$ if using $R - Y$) and 1^{st} M1 for $Var(D) = 0$	$8^2 + 1.5^2$ o.e.
(4)	2^{nd} M1 for attempt at P(D > 0) must standardise with their -3 and their 1.7 and	.0 1 1.5 0.0.
	A1 for awrt 0.039	nd inequality
(b)		nd inequality
(b)	A1 for awrt 0.039	
(b)	A1 for awrt 0.039 1st M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$	
(b)	A1 for awrt 0.039 1^{st} M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$ 1^{st} A1 for $(R_1 + R_2 + R_3) \sim N\left(45, \sqrt{6.75}^2\right)$ 2^{nd} A1 for $4Y \sim N\left(48, \sqrt{2}\right)$ 2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc) Must have L with mean of ± 3 and $\sigma_L^2 = \text{``}6.75\text{''} + \text{``}10.24\text{''} = (4.1218)$	$\sqrt{10.24}^2$)
(b)	A1 for awrt 0.039 1^{st} M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$ 1^{st} A1 for $(R_1 + R_2 + R_3) \sim N(45, \sqrt{6.75}^2)$ 2^{nd} A1 for $4Y \sim N(48, \sqrt{2})$ 2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc) Must have L with mean of ± 3 and $\sigma_L^2 = 6.75^\circ + 10.24^\circ = (4.1218$ 3^{rd} A1 for a correct mean and variance. Sight of N(± 3, 16.99) scores 1 st 5 magnetic for a second $2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + $	$\sqrt{10.24}^{2}$)
(b)	A1 for awrt 0.039 1^{st} M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$ 1^{st} A1 for $(R_1 + R_2 + R_3) \sim N\left(45, \sqrt{6.75}^2\right)$ 2^{nd} A1 for $4Y \sim N\left(48, \sqrt{2}\right)$ 2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc) Must have L with mean of ± 3 and $\sigma_L^2 = \text{``}6.75\text{''} + \text{``}10.24\text{''} = (4.1218)$	$\sqrt{10.24}^{2}$)
(b) (c)	A1 for awrt 0.039 1^{st} M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$ 1^{st} A1 for $(R_1 + R_2 + R_3) \sim N\left(45, \sqrt{6.75}^2\right)$ 2^{nd} A1 for $4Y \sim N\left(48, \sqrt{200}\right)$ 2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc) Must have L with mean of ± 3 and $\sigma_L^2 = (6.75)^2 + (10.24)^2 = (4.1218)$ 3^{rd} A1 for a correct mean and variance. Sight of N (± 3 , 16.99) scores 1 st 5 ma 3^{rd} dM1 (dep on 2^{nd} M1) for attempting a prob (\rightarrow ans > 0.5) using $\mu_L = \pm 3$ and 4^{th} A1 for awrt 0.767 (Calc: 0.7666384 or tables 0.7673) 1^{st} M1 for an attempt to use $E(X) = 780$ must see a linear equation in a and b units of the sum of a and b and a	$\sqrt{10.24}^2$) c^2 $c^$
	A1 for awrt 0.039 1^{st} M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$ 1^{st} A1 for $(R_1 + R_2 + R_3) \sim N(45, \sqrt{6.75}^2)$ 2^{nd} A1 for $4Y \sim N(48, \sqrt{6.75}^2)$ 2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc) Must have L with mean of ± 3 and $\sigma_L^2 = (6.75)^2 + (10.24)^2 = (4.1218$ 3^{rd} A1 for a correct mean and variance. Sight of $N(\pm 3, 16.99)$ scores 1^{st} 5 ma 3^{rd} dM1 (dep on 2^{nd} M1) for attempting a prob (\rightarrow ans > 0.5) using $\mu_L = \pm 3$ and 4^{th} A1 for awrt 0.767 (Calc: 0.7666384 or tables 0.7673) 1^{st} M1 for an attempt to use $E(X) = 780$ must see a linear equation in a and b under a 1 for a 2 and a 3 for a 4 for a 5 and a 6 for a 6 for a 7 for a 8 for a 9 for a 9 o.e. e.g. a 9 for a 1 for a 1 for a 1 for a 2 for a 1 for a 2 for a 3 for a 4 for a 4 for a 4 for a 5 for a 5 for a 6 for a 6 for a 8 for a 9 for a 1 for a 1 for a 2 for a 2 for a 3 for a 4 for a 4 for a 4 for a 5 for a 5 for a 6 for a 6 for a 8 for a 8 for a 9 for a 9 for a 1 for a 1 for a 2 for a 3 for a 4 for a 5 for a 5 for a 6 for a 6 for a 8 for a 9 for a 9 for a 9 for a 9 for a 1 for a 1 for a 1 for a 2 for a 3 for a 4 for a 3 for a 4 for a 5 for a 6 for a 8 for a 8 for a 9 for a 9 for a 1 for a 1 for a 2 for a 3 for a 3 for a 4 for a 5 for a 6 for a 6 for a 8 for a 9 for a 9 for a 9 for a 1 for a 1 for a 2 for a 3 for a 3 for a 4 for a 4 for a 5 for a	$\sqrt{10.24}^2$) 10.24
	1st M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$ 1st A1 for $(R_1 + R_2 + R_3) \sim N(45, \sqrt{6.75}^2)$ 2nd A1 for $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd A1 for a correct mean and variance. Sight of $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd A1 for a correct mean and variance. Sight of $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd A1 for a correct mean and variance. Sight of $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd A1 for a correct mean and variance. Sight of $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd A1 for a correct mean and variance. Sight of $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd A1 for a correct mean and variance. Sight of $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd A1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st M1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st M1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st A1 for $4Y \sim N(48, \sqrt{6.75}^2)$ 2nd A1 for $4Y \sim N(48, \sqrt{6.75}^2)$ 3rd M1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st A1 for $4Y \sim N(48, \sqrt{6.75}^2)$ 1st M1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st A1 for $4Y \sim N(48, \sqrt{6.75}^2)$ 1st M1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st M1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st M1 for an attempt to use E(X) = 780 must see a linear equation in $4X \sim N(48, \sqrt{6.75}^2)$ 1st M1 for an attempt to find an expression for $4X \sim N(48, \sqrt{6.75}^2)$ 2nd M1 for an attempt to find an expression for $4X \sim N(48, \sqrt{6.75}^2)$ 2nd M1 for forming a quadratic expression for $4X \sim N(48, \sqrt{6.75}^2)$ 3rd M1 for forming a quadratic expression for $4X \sim N(48, \sqrt{6.75}^2)$ 3rd M1 for forming a quadratic expression for $4X \sim N(48, \sqrt{6.75}^2)$ 3rd M1 for forming a quadratic ex	$\sqrt{10.24}^2$) $\sqrt{10.24}^2$) $\sqrt{10.24}^2$
	A1 for awrt 0.039 1^{st} M1 for correct mean or variance for either $R_1 + R_2 + R_3$ or $4Y$ 1^{st} A1 for $(R_1 + R_2 + R_3) \sim N(45, \sqrt{6.75}^2)$ 2^{nd} A1 for $4Y \sim N(48, \sqrt{6.75}^2)$ 2^{nd} M1 for attempting a suitable L (condone $3R - 4L$ etc) Must have L with mean of ± 3 and $\sigma_L^2 = (6.75)^2 + (10.24)^2 = (4.1218$ 3^{rd} A1 for a correct mean and variance. Sight of $N(\pm 3, 16.99)$ scores 1^{st} 5 ma 3^{rd} dM1 (dep on 2^{nd} M1) for attempting a prob (\rightarrow ans > 0.5) using $\mu_L = \pm 3$ and 4^{th} A1 for awrt 0.767 (Calc: 0.7666384 or tables 0.7673) 1^{st} M1 for an attempt to use $E(X) = 780$ must see a linear equation in a and b under a 1 for a 2 and a 3 for a 4 for a 5 and a 6 for a 6 for a 7 for a 8 for a 9 for a 9 o.e. e.g. a 9 for a 1 for a 1 for a 1 for a 2 for a 1 for a 2 for a 3 for a 4 for a 4 for a 4 for a 5 for a 5 for a 6 for a 6 for a 8 for a 9 for a 1 for a 1 for a 2 for a 2 for a 3 for a 4 for a 4 for a 4 for a 5 for a 5 for a 6 for a 6 for a 8 for a 8 for a 9 for a 9 for a 1 for a 1 for a 2 for a 3 for a 4 for a 5 for a 5 for a 6 for a 6 for a 8 for a 9 for a 9 for a 9 for a 9 for a 1 for a 1 for a 1 for a 2 for a 3 for a 4 for a 3 for a 4 for a 5 for a 6 for a 8 for a 8 for a 9 for a 9 for a 1 for a 1 for a 2 for a 3 for a 3 for a 4 for a 5 for a 6 for a 6 for a 8 for a 9 for a 9 for a 9 for a 1 for a 1 for a 2 for a 3 for a 3 for a 4 for a 4 for a 5 for a	$\sqrt{10.24}^2$) rks and their σ_L rks