

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Question Paper Log Number P66652A Publications Code WST01_01_2201_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question	Sahama	Marks
Number	Scheme	WIALKS

1. (a)	$P(C') = \frac{103}{120}$ oe awrt 0.858	B1	
(b)	$\mathbf{P}(A \cap B \cap C') = 0$	(1) B1 (1)	
(c)	$P(A \cup B \cup C') = \frac{9 + 3 + 2 + 5 + 1 + 93}{120} \text{ or } P(A \cup B \cup C') = 1 - \frac{7}{120}$	M1	
	$= \frac{113}{120}$ oe awrt 0.942	A1 (2)	
(d)	P(At most 1) = P(0 or 1) = $\frac{93+9+7+1}{120}$ or $\frac{120-2-5-3}{120}$	(2) M1	
	$= \frac{110}{120}$ oe awrt 0.917	A1 (2)	
(e)	$P(A At most 1) = \frac{\frac{9}{120}}{\frac{110}{120}}$	(2) M1	
	$= \frac{9}{110} \text{ oe} \qquad \text{awrt } 0.0818$ $\boxed{P(X=0) = \frac{93}{120}} P(X=1) = \frac{17}{120} P(X=2) = \frac{8}{120} P(X=3) = \frac{2}{120}$	A1 (2)	
(f)	$\left[P(X=0) = \frac{93}{120} \right] P(X=1) = \frac{17}{120} P(X=2) = \frac{8}{120} P(X=3) = \frac{2}{120}$	M1	
	$E(X) = \left[\frac{93}{120} \times 0\right] + \frac{17}{120} \times 1 + \frac{8}{120} \times 2 + \frac{2}{120} \times 3$	M1	
	$=\frac{13}{40}$ or 0.325 oe	A1 (3)	
	Notes	[11]	
(a)	B1 (allow awrt 0.858)	1	
(b) (c)	B1 cao condone $0/120$ but do not allow other denominators M1 for either correct expression for $P(A \cup B \cup C')$		
(1)	A1 o.e. (allow awrt 0.942)		
(d)	M1 correct expression		
	A1 $\frac{11}{12}$ o.e. (allow awrt 0.917)		
(e)			
(f)	denominator of 120 $\frac{m}{"\text{their 110"}}$ where $0 \le m \le \text{their 110 Allow} \frac{n}{120-3-2-5}$ or $\frac{n}{110}$ $0 \le n \le 110$ A1 o.e. (allow awrt 0.0818) 1^{st} M1 for the probability distribution of X (condone missing P(X=0)) awrt 0.14 awrt 0.060	where 57 and	
	awrt 0.017 May be implied by a correct expression for $E(X)$. At least 2 correct must be asso with the correct x value 2^{nd} M1 correct follow through expression for $E(X)$ ft their probabilities and X values A1 Dep on both previous method marks being awarded. Working must be checked . A correct answer with no working scores $3/3$		
	SC $P(X = 17) = 17/120$ (awrt 0.14) $P(X = 8) = 8/120$ (awrt 0.067) $P(X = 14) = 14/120$ (a	wrt 0.12)	

Question	
Number	

2. (a)	$S_{dp} = 5240.8 - \frac{1029 \times 50.8}{10} [= 13.48]$ $r = \frac{'13.48'}{\sqrt{344.9 \times 0.576}}$	M1	
	$r = \frac{'13.48'}{\sqrt{344.9 \times 0.576}}$	M1	
	= 0.9563834526 awrt <u>0.956</u>	A1	(3)
(b)(i)	w = 50 - p	B1	
(ii)	-1	B1	
			(2)
(c)	-0.956	B1ft	
			(1)
		[6]	
	Notes		
(a)	$1^{st} M1$ correct expression for S_{dp}		
	2^{nd} M1 valid attempt at r with their S_{dp} not equal to 5240.8 and the correct denominator	or	
	A1 awrt 0.956		
(b)(i)	B1 allow equivalent rearrangements		
(ii)	B1 – 1 cao		
(c)	B1ft follow through $-1 \times \text{their}(a)$ providing $-1 < \text{their}(a) < 1$		

<u> </u>	
Question	
Number	

3. (a)			B1	
	" 125 " + 1.5 × (" 125 " – " 116 ") or " 125 " + 1	1.5 × (9)	M1	
	Outlier is greater than 138.5, so $c = 9^*$		A1*cso (3)	
(b)	$\overline{x} = \frac{-96}{24} [= -4]$	$\sum d = 125 \times 24 - 96[= 2904]$	M1	
	$\overline{x} = \frac{-96}{24} [= -4]$ $\overline{d} = '\overline{x}' + 125$	$\sum_{d=1}^{\infty} d = 125 \times 24 - 96 [= 2904]$ $\overline{d} = \frac{"2904"}{24}$	M1	
		$\overline{d} = 121$	A1 (3)	
(c)	$\left[\sigma_x = \sigma_d\right] = \sqrt{\frac{1306}{24}}$		M1	
	V 24	$[\sigma_d] = 7.3767$ awrt <u>7.38</u>	A1 (2)	
(d)	$\left[P(D > 118 X < 0) \right] = \frac{P(118 < D < 125)}{P(D < 125)} \text{or}$	r $\frac{P(-7 < X < 0)}{P(X < 0)}$ or $\frac{\frac{5}{24}}{\frac{14}{24}}$	M1	
	$=\frac{5}{14}$		A1	
			(2) [10]	
		Notes		
(a)	B1 both values correct. Both values must be seen either in the calculation or separately. They are not implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their values. May be implied by 138.5 if B1 awarded			
	A1*cso for 138.5 and conclusion $c = 9$ (do not accept $c = 139$) with no errors. Answer is given so			
	working must be shown.			
(b)	1^{st} M1 for correct expression for \overline{x}	1^{st} M1 for correct expression for Σ	d	
	2^{nd} M1 use of $\overline{d} = '\overline{x}' + 125$	2^{nd} M1 use of " $\sum d$ " ÷ 24 must be clear it is their sum		
	A1 121			
	NB condone no labelling or incorrect labelling throughout part(b)			
	1306			
(c)	M1 correct expression $\sqrt{\frac{1300}{24}}$			
	A1 awrt 7.38 final answer			
(d)	M1 correct probability statement (allow	a probability of $\frac{k}{14}$ where $0 < k < 14$ to see	ore M1)	
		17		

4. (a) $\frac{2}{5}$ (b) $E(W) = 3$ E(5-2W) = 5-2E(W) E(X) = -1	B1 (1)		
E(5-2W) = 5-2E(W)	(1)		
	B1		
	M1 A1 (3)		
(c) $P(X < W) = P(5 - 2W < W) = P(W > \frac{5}{3}) \text{ or } P(W \ge 2)$	M1		
$=\frac{4}{5}$	A1 (2)		
(d)(i) $\begin{bmatrix} y \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$ $\begin{bmatrix} p \end{bmatrix} \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{bmatrix}$	B1		
(ii) $E(Y) = \frac{1}{5} \left(1 + \frac{1}{2} \dots + \frac{1}{5} \right) \text{ or } \frac{1}{5} + \frac{1}{10} + \frac{1}{15} + \frac{1}{20} + \frac{1}{25} \left[= \frac{137}{300} = 0.4566 \dots \right]$	M1		
$E(Y^{2}) = \frac{1}{5} \left(1^{2} + \left(\frac{1}{2}\right)^{2} + \dots + \left(\frac{1}{5}\right)^{2} \right) \text{ or } \frac{1}{5} + \frac{1}{20} + \frac{1}{45} + \frac{1}{80} + \frac{1}{125} \left[= \frac{5269}{18000} = 0.2927.\dots \right]$	M1		
$Var(Y) = '0.2927' - ('0.4566')^2$ awrt <u>0.0842</u>	M1 A1 (5)		
(e) $Var(2-3Y) = (-3)^2 Var(Y)$ awrt <u>0.758</u>	M1 A1ft		
Notes	(2) [13]		
(a) B1 oe			
(b) B1 sight of $E(W) = 3$ or the x values 3, 1, -1, -3, -5 (they may be added)			
M1 use of $E(5-2W) = 5-2E(W)$ or $\frac{1}{5}(3+1++5)$ Condone use of X instead of	W		
(c) A1 cao and labelled E(X) M1 for identifying $W > \frac{5}{3}$ or $W \ge 2$ eg $1 - P(W = 1) \ge 2$ or $1 - P(W \le 1) \ge 2$	A1 cao and labelled $E(X)$		
(d)(i) A1 oe B1 Correct distribution (probabilities may be implied by correct use). May be seen in any	A1 oe B1 Correct distribution (probabilities may be implied by correct use). May be seen in any part M1 attempt at expression for $E(Y)$ using their values of y and p (at least 2 terms seen) or awrt 0.457		
M1 attempt at expression for $E(Y^2)$ using their values of y and p (at least 2 terms seen) of (0.2885 if have 0.3 rather than 1/3) Condone incorrect labelling M1 For use of " $E(Y^2)$ "-(" $E(Y)$ ") ² ft their values for $E(Y^2)$ and $E(Y)$	or awrt 0.293		
Al awrt 0.0842 or $\frac{947}{11250}$			
(e) M1 for use of $(-3)^2 \operatorname{Var}(Y)$ with their $\operatorname{Var}(Y) > 0$ condone $(3)^2 \operatorname{Var}(Y)$			
A1ft $\frac{947}{1250}$ or $9 \times$ "their part (d) > 0" evaluated correctly to 3sf or exact fraction			

Question Number	Scheme	Marks	
5. (a)	$P(X < 37) = P\left(Z < \frac{37 - 40}{2.4}\right) = P(Z < -1.25)$	M1	
	= 1 - 0.8944; $= 0.105649$ awrt <u>0.106</u>	M1; A1 (3)	
(b)	P(one value is greater than 32) = $\sqrt{0.16}$ [=0.4]	M1	
	$\frac{32-m}{2.4} = 0.2533$	M1 B1	
	m = 31.392 awrt <u>31.4</u>	A1 (4)	
(c)	$P(Y < 0) = P\left(Z < \frac{0-4}{8}\right) = P\left(Z < -0.5\right) [= 0.3085]$	M1	
	Let X be the number of negative values $P(X > 1) = 1 - P(X = 0)$	2.61	
	$P(X \ge 1) = 1 - P(X = 0)$ oe	M1	
	$= 1 - (0.6915)^5$ = 0.84188 awrt 0.842	M1 A1	
		(4) [11]	
	Notes		
(a)	1^{st} M1 standardising 37 (or 43) with 40 and 2.4 (allow \pm) 2^{nd} M1 for $1 - p$ (where $0.88) Implied by correct answer.A1for awrt 0.106 (calc. 0.105649)$		
(b)	1^{st} M1 correct expression for one value > 32 (may be implied by sight of 0.2533 Allow any value between 0.25 and 0.26 inclusive)		
	2^{nd} M1 standardising 32 with <i>m</i> and 2.4 and setting equal to <i>z</i> value $0.2 < z < 0.3$		
	B1 for $z = \pm 0.2533$ or better (calc gives 0.2533470931) used in a linear equation A1 awrt 31.4 or better	n for <i>m</i>	
	SC [using 0.16]Allow M0M1 B0 A0 for $\frac{32-m}{2.4} = z$ where $0.99 \le z < 1.04$		
(c)	2 nd M1 realising they need to find $1 - P(X = 0)$ ie writing or using $1 - P(\text{no negative values})$ oe May be implied by $1 - p^5$ 0		
	3 rd M1 use of $1 - p^5$ where p is $1 - $ "their P $\left(Z < \frac{0-4}{8}\right)$ "		
	A1 awrt 0.842 (tables: 0.8418894 calculator: 0.84193233)		
	NB If they use Binomial and get 0.842 full marks. and get 0.125 then award M1M1M0A0 otherwise send to Review		

Question Number		Scheme	Marks
6. (a)	$\overline{f} = 10.8 + 0.748 \overline{p} = 10.8 + 0.748(62.4)$	4) awrt <u>57.5</u>	M1 A1
(b)	For each additional <u>mark</u> scored on the <u>pre-test</u> , the average <u>mark</u> on the <u>final exam</u> <u>increases</u> by 0.748		(2) B1 (1)
(c)	The statement is not reliable as there is r 76	no data below 19 (extrapolation).	$ \begin{array}{c} (1) \\ B1 & (1) \\ B1 & (1) \end{array} $
(d) (e)	p < 10.8 + 0.748 p		M1
	0.252 <i>p</i> <10.8		M1
(f)	[No change to] $S_{pp} = 15\ 573.76$	<i>p</i> < awrt <u>42.9</u>	A1 (3)
(1)	$\sum pf = 133486 - 2842 + 9016$ [=139660]	$\sum pf$ increases by $98(92-29)[=6174]$	M1
	$2120 = 1954 + 92 - 29 \approx 2017$	$\frac{\sum_{p} \sum_{n} f}{n} \text{ increases by } \frac{2120(92 - 29)}{34} = 3928.235]$	M1
	$S_{pf} = "139660" - \frac{2120 \times "2017"}{34}$ [= 13894]	S _{pf} increases by '6174' -'3928.235' [=2245.764]	dM1
	$b = \frac{"13894"}{15573.76} [= 0.89]$	$b = \frac{11648.35 + "2245.764"}{15573.76}$	M1
		awrt <u>0.9</u> Notes	A1 (5) [13]
(a)		sion equation. Allow answer between 57 and 58	[13]
(b)		to 0.748 Needs to refer to each mark being 0.748 or	-
(c) (d) (e)	B1 76 cao		
	by $p < n$ (ignore any lower limit	t) where $40 \le n < 46$ (allow incorrect inequality sig	gn or =)
	Allow trial and improvement. 2^{nd} M1 means and to the form $an < b$ w	ith compact inequality size Allow (1 0.749) = <1	0.8
		ith correct inequality sign. Allow $(1-0.748) p < 1$ e any lower limit) where $42 < n < 44$	0.0
<i>(</i> D	A1 $p < awrt 42.9$ (ignore any lower lim	it) ISW	
(f)			
		f or change in $\frac{\sum p \sum f}{n}$ Allow 2018 or 2017 parks being awarded. Correct method to find new S	with
	3^{rd} dM1 dep on both previous method marks being awarded. Correct method to find new S_{pf} with their changed $\sum pf$ and $\sum f$ or change in S_{pf}		
	— —	with their changed S_{pf} and unchanged S_{pp}	
	A1 awrt 0.9 (from correct working)	ry – PP	

Question Number	Scheme	Marks	
7. (a)	$P(X=3) = F(3) - F(2) = \frac{1}{38}$	M1	
	$P(X=3) = \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}$	M1	
	$\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} = \frac{1}{38} \to n(n-1)(n-2) = 7980 $ (*)	M1 A1cso	
(b)	$21 \times 20 \times 19 = 7980$	(4) B1cso	
		(1)	
(c)	$a = F(0) = P(X=0) = \frac{14}{21} \times \frac{13}{20} \times \frac{12}{19}$	M1	
	$a = \frac{26}{95}$	A1	
	P(X=1) $3 \times \frac{14}{21} \times \frac{13}{20} \times \frac{7}{19} \left[= \frac{91}{190} \right]$ or P(X=2) $3 \times \frac{7}{21} \times \frac{6}{20} \times \frac{14}{19} \left[= \frac{21}{95} \right]$	M1 M1	
	$b = F(1) = P(X=0) + P(X=1) = "\frac{26}{95}" + "\frac{91}{190}" \text{ or } b = \frac{37}{38} - "\frac{21}{95}"$	dM1	
	$b = \frac{143}{190}$	A1	
		(6)	
	Notes		
(a)	1 st M1 for use of F(3) – F(2) Accept $\frac{1}{38}$		
	2 nd M1 product of 3 probabilities where the denominators are <i>n</i> , $(n-1)$ and $(n-2)$ an numerators are decreasing <i>k</i> , $(k-1)$ and $(k-2)$ This may be seen as a single term in a sexpression. 3 rd M1 setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without replaced and the setting up equation for P(X = 3) = product of correct 3 probabilities without product and the setting up equation for P(X = 3) = product of correct 3 probabilities without product and the setting up equation for P(X = 3) = product and the setting up equation for P(X = 3) = product and the setting up equation for P(X = 3) = product and the setting up equation for P(X = 3) = product and the set and the setting up eq	onger	
	Alcso fully correct solution with no errors seen		
(b)	B1cso correctly evaluated product. Allow $21(21-1)(21-2) = 7980$		
(c)	1 st M1 product of 3 probabilities for P(X = 0) The three probabilities can be in any arran be implied by $\frac{26}{95}$	gement May	
	$a = \frac{26}{95}$ oe must be clear this is the value for <i>a</i>		
	2 nd M1 product of 3 probabilities for P(X=1) or P (X=2) or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{9}$	– oe seen. 5	
	Condone incorrect labelling. The three probabilities can be in any arrangement	-	
	3^{rd} M1 × 3 or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect labelling		
	4 th dM1 their $P(X=0)$ + their $P(X=1)$ or $F(2) - P(X=2)$ (dep on 2 nd M1 being scored)		
	$2^{nd} A1 b = \frac{143}{190}$ oe must be clear this is the value for b		
	NB if $a = 0.273$ and $b = 0.7526$ implies the method marks.		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom