

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level in Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Question Paper Log Number P71201A Publications Code WST02_01_2201_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme			
1 (a)	$X = $ faults in a week $\Rightarrow X \sim Po(6)$			
	$[P(X \ge x) = 0.1528 \Longrightarrow P(X \le x - 1)] = 0.8472$			
	Using tables $P(X \le 8) = 0.8472 \implies x - 1 = 8$			
	x = 9			
			(3)	
(b)	Y = faults	in six weeks \Rightarrow <i>Y</i> ~ N(36,36)	B1	
	$\mathbf{P}(Y < 32)$	2) = P $\left(Z < \frac{31.5 - 36}{6}\right) \left[= P\left(Z < -0.75\right)\right]$	M1 M1	
	= 0.2266	awrt 0.227	A1	
			(4)	
(c)	W = Num	ber of <i>poor weeks</i> $\Rightarrow W \sim B(50, 0.1528)$	B1	
	$[\mathbf{P}(W > 1)]$	$1)] = 1 - P(W \leqslant 1)$	M1	
	$= 1 - \left(0.8472^{50} + 50 \times 0.1528 \times 0.8472^{49}\right)$			
	= 0.99748	awrt 0.997	Al	
			(4)	
	Notes Total			
1 (a)	M1	Writing or using $1 - P(X \le x - 1)$		
	M1	For 0.8472 May be implied by $x - 1 = 8$		
	Al	x = 9	、 、	
(b)	B 1	Writing or using N(36,36) (May be implied by a correct standardisation expression	n)	
	M1	M1 Standardising with $30.5/31/31.5/32/32.5/39.5/40/40.5/41/41.5$, their mean and standard deviation (Allow ±)		
	M1	A fully correct standardisation. May be implied by ± 0.75		
	Al	awrt 0.227		
(c)	B1	Writing or using B(50,0.1528)		
	M1 Writing or using $1 - P(W \le 1)$ (Allow any letter)			
		Dependent on using binomial.		
		Using $1 - [P(W = 0) + P(W = 1)]$ (implied by awrt 0.997 or 0.9975 or 1 – awrt 0.00	0257)	
	dM1	Using binomial may be implied by $(1-p)^{50} + {}^{n}C_{r} \times p \times (1-p)^{49}$ where p is a pro	bability	
		Condone ${}^{n}C_{r}$ missing		
	A1	awrt 0.997 or 0.9975		

Question Number	Scheme					
2 (a)	$\mathbf{f}(x) = \begin{cases} \\ \end{cases}$	$ \frac{1}{4k} -k \leqslant x \leqslant 3k $ 0 otherwise	M1 A1			
			(2)			
(b)	[E(X)] =	k	B1			
			(1)			
(c)	$[\operatorname{Var}(X)]$	$] = \frac{(3kk)^2}{12} = \frac{16k^2}{12} \text{or} \left[\frac{x^3}{3} "f(x)"\right]_{-k}^{3k} - ("k")^2$	M1			
	$=\frac{4k^2}{3}*$		A1* cso			
			(2)			
(d)	$E(X^2) =$	$Var(X) + E(X)^{2} = \frac{4k^{2}}{3} + ("k")^{2}$	M1			
	$=\frac{7k^2}{3}$ A1					
	$E(3X^2)$	$= 3\mathrm{E}(X^2) = 3 \times \frac{7k^2}{3} = 7k^2$	A1			
			(3)			
		Notes	Total 8			
2 (a)	M1	For the 1 st line of the pdf including the inequality, allow use of < instead of one/both	\leq signs			
	A1	Fully correct, allow use of $<$ instead of one/both \leq signs. Allow equivalent for the 0	otherwise.			
(b)	B1	Cao				
(c)	M1	Use of Var(X) = $\frac{(\beta - \alpha)^2}{12}$ or $\left[\frac{x^3}{3} "f(x)"\right]_{-k}^{3k} - ("k")^2$				
	A1* cso Answer is given. Correct solution only with no incorrect working.					
(d)	M1	Use of $E(X^2) = Var(X) + E(X)^2$ ft their $E(X)$ or $\left[\frac{x^3}{3} f(x)\right]_{-k}^{-k}$ this integration may be seen in part (c) or part (d)				
	A1	$\frac{7k^2}{3}$ (This must be seen in part (d)) May be implied by $7k^2$)				
	A1	Cao				

Question Number	Scheme				
3 (a)	We can as	We can assume breakdowns are [rare], independent events occurring at a constant rate.			
			(1)		
(b)	$H_0: \lambda =$	8 $H_1: \lambda \neq 8$	B1		
	0	1	(1)		
(c)	$X \sim Po($	8)	(1)		
(-)	$P(X \leq 2)$	$P = 0.0138$ oe $P(X \le 3) = 0.0424$ oe	M1		
	P(X > 14)	$A_{1} = 0.0342$ or $P(X \ge 15) = 0.0173$ or	M1		
	V < 2	V > 15 on	A 1		
	$A \leq 2 \cup 2$	<i>A</i> ≥ 15 0e	A (2)		
(b)	"0.0138"	+ "0 0173"	(3) M1		
(u)	="0.0130 ="0.0311	»	Alft		
	0.0011	·	(2)		
(e)	"[4 is] no	t in the critical region"	M1		
~ /	So there i	s insufficient evidence that refurbishment has changed the mean breakdown rate	A1		
			(2)		
		Notes	Total 9		
3 (a)	B 1	A correct statement which include the words independent or constant rate or singly. No needed) context		
(b)	B1 Both hypotheses correct. Must be attached to H_0 and H_1 in terms of λ or μ .				
(a)	M1	Use of $Po(8)$ to find the lower critical value. May be implied by either 0.0138 or 0.042	24 or		
(0)	IVIII	$X \leqslant 2$ if no probabilities shown (Calculator values: 0.01375 and 0.04238)			
	Use of Po(8) to find the upper critical value. May be implied by 0.0342 or 0.0173 or 0.9658				
	M1	0.9827 or $X \ge 15$ if no probabilities shown (Calculator values: 0.03418 and 0.0172	5 and		
		0.96581 and 0.98274)			
	A 1	$X \leq 2$ or $[\cup]X \geq 15$ or Condone the use of and/or Do not allow as probability stater	nents		
	AI	Allow [0, 2] or [0, 3) and [15, ∞] or [15, ∞) or (14, ∞] or (14, ∞)			
(d)	M1	Adding the two probabilities for their critical region			
	A1ft	0.0311 Allow 3.11 or awrt 3.1[0] or awrt 0.031[0] ft their critical region			
		NB 3.11 or 0.0311 or awrt 3.1[0] or awrt 0.031[0] will score 2/2			
(e)	M1	A correct statement ft their critical region e.g. Do not reject $H_0/Accept H_0/not$ significa	nt – no		
		context needed but do not allow contradicting non contextual comments	ad fac		
	A1	correct conclusion in context. Must include rate/number of breakdown (Allow decreas changed)	ed for		
		NB Award M1 A1 for a correct contextual statement on its own			

Question Number	Scheme			
4 (a)	$\begin{bmatrix} \mathbf{f}(x) \end{bmatrix}^{\bigstar}$	3 6 10 [x]	B1 B1	
(b)	$\frac{1}{2}(3+9) \approx$ or $\frac{1}{2}k\left[\frac{x}{2}\right]$	× $k = 1$ or $\frac{1}{2}(3-1)k + (6-3)k + \frac{1}{2}(10-6)k = 1$ $\frac{x^2}{2} - x \Big]_1^3 + k \Big[x \Big]_3^6 + \frac{1}{4}k \Big[10x - \frac{x^2}{2} \Big]_6^{10} = 1$	(2) M1	
	$k = \frac{-}{6}$		$\begin{array}{ c c c } A1^* \cos \end{array} $	
(c)	$\int_{1}^{x} \frac{1}{12} (x - x) dx$	$(-1)dx$ or $\int \frac{1}{12}(x-1) dx$ and using $F(1) = 0$	M1	
	$\int_{3}^{x} \frac{1}{6} dx + \frac{1}{6$	"F(3)" or $\int \frac{1}{6} dx$ and using "F(3) = $\frac{1}{6}$ "	M1	
	$\int_{6}^{x} \left(\frac{5}{12} - \frac{1}{2}\right)^{x}$	$\frac{1}{24}x dx + "F(6)" \text{ or } \int \left(\frac{5}{12} - \frac{1}{24}x\right) dx \text{ and using either "F(6)} = \frac{2}{3} \text{ "or } F(10) = 1$	M1	
	0	x < 1		
		$\frac{1}{24}\left(x^2 - 2x + 1\right) \qquad \qquad 1 \leqslant x \leqslant 3$	Aloe	
	$F(x) = \begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases}$	$\frac{1}{2}(x-2) \qquad \qquad 3 < x \le 6$	Aloe	
		$\frac{1}{2}(20x - x^2 - 52) \text{ or } 1 - \frac{(10 - x)^2}{6} \text{ for } x \le 10$	A1 oe	
	4	$48 \begin{pmatrix} 20x & x & 52 \end{pmatrix} 61 1 48 x > 10$	BI	
			(7)	
(d)	P(X > E((X)) = 1 - F $\left(\frac{61}{12}\right)$ = 1 - 0.51388 = 0.4861 awrt 0.486	M1 A1 (2)	
(e)	Since (d) < or follow t	< 0.5 [the mean is greater than the median] therefore positive (skew) hrough their sketch in part (a)	M1 A1ft	
	Notos			
4(a)	B1	Correct shape. Must start and end on the x axis	10(a) 15	
	 D1	Fully correct including 1, 3, 6, 10 and k. Allow $1/6$ for k Ignore labels for x and f(x) a	and any	
	DI	extras e.g. ^k / ₂	-	
(b)	M1	Setting up the area of the trapezium = 1 or 2 triangles + a rectangle = 1 or a fully correct integration, including limits =1		
	A1* cso Answer is given. Correct solution only with no incorrect working.			

(c)	M1	For a correct method to find the 2^{nd} line Allow in terms of k
-----	----	--

	M1	For a correct method to find the 3 rd line, ft their F(3). If using + c method then ft their F(3) = $\frac{1}{6}$ Allow in terms of k
	M1	For a correct method to find the 4 th line, ft their F(6). If using + c method then ft their F(6) = $\frac{2}{3}$
	A 1	2 nd line correct including inequality. Allow \leq instead of \leq
		2 Inte correct including inequality. Allow < instead of <
		the time contect including inequality. Allow < instead of
	AI	4 th line correct including inequality. Allow < instead of ≤
	B 1	1 st and 5 th line correct. Allow "otherwise" for the range on the 1 st or 5 th line but not both. All 5 lines must be in terms of the same letter.
(d)	M1	For use of $1 - F\left(\frac{61}{12}\right)$ using the their line of $F(x)$ for $3 < x \le 6$. May use integration/area methods
	A1	awrt 0.486 Allow ³⁵ / ₇₂
(e)	M1	For correctly comparing part (d) with 0.5 (may be implied by a correct comparison of mean and median (5)) do not allow mean is greater than the median on its own
	A1ft	For positive skew or ft their answer to part (d) Accept "no (or negligible) skew" following a reason that "mean \approx median" Allow argument based on sketch in part (a)

Question Number	Scheme			rks		
5 (a)	B(<i>n</i> , 0.045	5)	B1			
(b)	Applicant	s are independent (no identical twins) or the <u>proportion/probability</u> identified as <u>colour</u>	B1			
~ /	blind does	s not change over time	1	(1)		
(c)	B(120_0	$B(120, 0.045) \rightarrow P_0(5.4)$				
(0)	B(120, 0	-5.4×5				
	P(X=5)	$=\frac{e^{2} \times 3.4}{5!}$	M1			
	-0.1729	5!	A 1			
	- 0.1/28.	awit 0.175	AI	(3)		
(d)	Binomial	with large <i>n</i>	B1	(3)		
	and very s	small p	B1			
				(2)		
(e)	$H_0: p =$	0.75 $H_1: p \neq 0.75$	B1			
	B(96, 0.7	$(75) \Rightarrow N(72,18)$	B1			
	67.5	-72 $x \pm 0.5 - 72$				
	$Z =\sqrt{2}$	$\overline{18}$ or $\sqrt{18}$	M1			
	v -	x + 0.5 - 72 $x - 0.5 - 72$				
	= -1.0606	6 or $\frac{1}{\sqrt{18}} < -1.96$ or $\frac{1}{\sqrt{18}} > 1.96$	A1			
	$P(\tau < -1)$	$\sqrt{10}$ $\sqrt{10}$ $\sqrt{10}$ awrt 0 144 or 0 145	A 1			
	T(2 < 1)					
	$\frac{1}{1} \text{ here is insufficient evidence to reject } \prod_{i=1}^{n} \frac{1}{1}$					
	Insufficier	nt evidence against Jaymini's claim	AI	(7)		
ALT	Let <i>p</i> be t	he probability of an applicant fail to become a pilot.		(/)		
	$H_{a}: p = 0.25$ $H_{a}: p \neq 0.25$					
	$B(96, 0.25) \Rightarrow N(24.18)$					
	28.5	r = 24 $r = 0.5 - 24$	DI			
	$Z = \frac{20.5}{7}$	$\frac{1}{10}$ or $\frac{\pi = 0.5 - 2.1}{\sqrt{10}}$	M1			
	$\frac{1}{10} \frac{1}{10} \frac$					
	= 1.06066	5 or $\frac{x+0.5-24}{\sqrt{10}} < -1.96$ or $\frac{x-0.5-24}{\sqrt{10}} > 1.96$	A1			
	D(->10)	$\sqrt{18}$ $\sqrt{18}$ $\sqrt{18}$ and $\sqrt{144}$ or $CP > 22.8$ and $\sqrt{144}$ or 0.144 or 0.145	A 1			
	T(2 > 1.0)	$x_{0} = 0.177770.177707000000000000000000$	Al			
	I here is if	isufficient evidence to reject H ₀	dMI			
	Insufficier	nt evidence against Jaymini's claim	AI	(7)		
		Notes	Tota	(7)		
5 (a)	B1	For binomial with correct parameters <i>n</i> and 0.045				
(h)	D1	For one of the given reasons. Must have context Allow equivalent statements Do not al	llow			
(0)	DI	number for proportion/probability				
(c)	B 1	Using or writing Po(5.4)				
	M1	For $\frac{e^{-\lambda}\lambda^5}{5!}$ with any value for λ				
	A1 awrt 0 173					
		NB A correct answer with no incorrect working scores 3/3				
(d)	B1	<i>n</i> is large (Allow number of trials for <i>n</i>)				

	B 1	<i>p</i> is small (Allow probability for <i>p</i>)	
(e)	B 1	Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁	
	B1	For writing or using N(72, 18) (May be implied by a correct standardisation expression)	
	M1	Standardising using 67.5 or 67 or 66.5 or $x \pm 0.5$ with their mean and standard deviation (Allow	
	IVIII	±)	
	Δ1	awrt -1.06 (may be implied by awrt 0.144 or 0.145) or a correct standardisation with ± 1.96	
	AI	(ignore incorrect inequality symbol and allow =)	
	Δ1	Using a probability route: awrt 0.144 or 0.145 or critical value of $z = \pm 1.96$	
	AI	Using a critical region route: CR < 63.2	
	dM1	Dependent on M1 A1. A correct statement – no context needed but do not allow contradicting	
	ulvii	non contextual comments. (Ignore any comparisons)	
		Correct conclusion in context. Must include the word claim.	
	A1	If they give an answer that refers to the claim then they must include the words applicants (oe),	
		and pilots. No hypotheses then A0	
		NB Award M1 A1 for a correct contextual statement on its own	
ALT	B 1	Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁	
	B 1	For writing or using N(24, 18) (May be implied by a correct standardisation expression)	
	М1	Standardising using 28.5 or 29 or 29.5 or $x \pm 0.5$ with their mean and standard deviation (Allow	
	IVII	±)	
	A 1	awrt 1.06 (may be applied by awrt 0.144 or 0.145) or a correct standardisation with ± 1.96	
	AI	(ignore incorrect inequality symbol and allow =)	
	Δ1	Using a probability route: awrt 0.144 or 0.145 or critical value of $z = \pm 1.96$	
	AI	Using a critical region route: CR < 32.8	
	dM1	Dependent on M1 A1. A correct statement – no context needed but do not allow contradicting	
	ulvii	non contextual comments. (Ignore any comparisons)	
		Correct conclusion in context. Must include the word claim.	
	A1	If they give an answer that refers to the claim then they must include the words applicants (oe),	
		and pilots. No hypotheses then A0	
		NB Award M1 A1 for a correct contextual statement on its own	

Question Number	Scheme					
	A sampling distribution is <u>all</u> the <u>values</u> of a <u>statistic</u> (obtained from a random sample) and					
6 (a)	the associated probabilities					
	or the pro	<u>obability distribution</u> of the <u>statistic (under random sampling)</u> .				
(b)	$P(6) = \frac{0}{1}$	$P(7) = \frac{3}{11}$ $P(8) = \frac{2}{11}$	B1			
	I		D1			
	(6, 6)(6')	7) (6, 8)	Ы			
	(0, 0)(0, 1)(7, 7)	7) (7, 8)	B1			
	(8, 6) (8, 7	7) (8, 8)				
	$\left[\mathbf{P}(T=1)\right]$	$2) =] \left[\left(\frac{6}{11} \right)^{n^2} = \left[\frac{36}{121} \right] \right]$				
	$\left[\mathbf{P}(T=1)\right]$	$3) =]2 \times \left[\left(\frac{6}{11}\right)\right] \times \left[\left(\frac{3}{11}\right)\right] = \left[\frac{36}{121}\right]$	M1			
	F	$[(6)]^{"}(2)^{"}(3)^{"} [33]$				
	$\lfloor \mathbf{P}(T=1) \rfloor$	$4) = \left[2 \times \left(\frac{3}{11}\right) \times \left(\frac{2}{11}\right) + \left(\frac{3}{11}\right)\right] = \left \frac{33}{121}\right $	M1			
			M1			
	$\left[\mathbf{P}(T=1)\right]$	$5) = \left] 2 \times \left(\frac{3}{11} \right) \times \left(\frac{2}{11} \right) = \left \frac{12}{121} \right $				
			-			
	$\Big[\mathbf{P}(T=1)\Big]$	$(6) = \left[\left(\frac{2}{11} \right)^2 \right] = \left \frac{4}{121} \right $				
	T					
	P(T=t)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1			
		$\frac{1}{121}$ $\frac{1}{121}$ $\frac{1}{121}$ $\frac{1}{121}$ $\frac{1}{121}$		(7)		
		<u>10 m u 36 m u10 m 36 m u10 m 33 m u10 m 12 m u10 m 4 m</u>				
(c)	E(I) = "	$12^{n} \times \frac{112}{121} + \frac{113}{121} \times \frac{1121}{121} + \frac{114}{121} \times \frac{1121}{121} + \frac{115}{121} \times \frac{1121}{121} + \frac{116}{121} \times \frac{1121}{121}$	MI			
	1606	146 12 272	A 1			
	$=\frac{121}{121}$	$=\frac{11}{11} = 13.272$ awrt 13.3	AI	(2)		
		Notos	Tat	1 10		
6 (2)	R1	A correct explanation with the words in hold	100	41 10		
0(a)	D1 D1	Connect explanation with the words in bold	for T	_ 1.4		
(b)	BI D1	Correct probabilities – may be seen in an equation or implied by a correct probability	/ Ior I	= 14		
	БІ	BI All 5 totals correct with no extras				
	B1	B1 Allow S for 6. M for 7 and L for 8				
	M1	Correct method for one probability ft their P(6), P(7) and P(8) If these are not stated then they				
		must be correct				
	M1	Correct method for three of the five probabilities ft their P(6), P(7) and P(8) If these are not stated then they must be correct				
	M1	Correct method for all five probabilities ft their P(6). P(7) and P(8) If these are not stated then				
	they must be correct or 5 probabilities that add up to 1					
	A1	1 cao Need not be in a table but probabilities must be attached to the correct total				
(c)	M1	Use of $\sum t P(T = t)$ two or more products ft their table				
	A1	A1 awrt 13.3 (Allow $\frac{146}{11}$ oe)				

Question Number		Scheme			
7 (a)	$P(L \ge 4$	$L \ge 4.5) \Rightarrow P(A \ge 20.25)$			
	$P(A \ge 20.25) = (30 - 20.25) \times \frac{1}{20}$			M1	
	= 0.4875				
				(2)	
(b)	$\operatorname{Var}(L) =$	$= \mathrm{E}(L^2) - \mathrm{E}(L)^2$			
	$[E(L^2) =$	$\mathrm{E}(A)] = 20$		B1	
			$g(L) = \begin{cases} \frac{L}{10} & \sqrt{10} \leq L \leq \sqrt{30} \\ 0 & \text{otherwise} \end{cases}$		
	E(L) = E	$E(\sqrt{A}) = \frac{1}{20} \int_{10}^{30} \sqrt{a} \mathrm{d}A$	$E(L) = \frac{1}{10} \int_{\sqrt{10}}^{\sqrt{30}} L^2 dL$	M1	
	$=\frac{1}{20}\left[\frac{2}{3}a^{\frac{3}{2}}\right]_{10}^{30}$		$\frac{1}{10} \left[\frac{l^3}{3} \right]_{\sqrt{10}}^{\sqrt{30}}$	A1	
	= 4.4231.			A1	
	Var(L) =	= "20"-("4.4231") ²	M1		
	= 0.4358.	4358 awrt 0.436			
		N0'	tes	l otal 8	
7 (a)	M1	$(30-20.25) \times \frac{1}{20}$			
	A1	cao (Allow 0.488 or $\frac{39}{80}$)			
(b)	B1	For 20			
	M1	Attempt to integrate $\frac{1}{20}\int_{10}^{30}\sqrt{a} dA$ or $\frac{1}{10}\int_{\sqrt{10}}^{\sqrt{30}}L^2 dL$ Ignore limits and accept any letter			
	A1	Fully correct integration. Accept any letter. Must have limits			
	A1	4.42 or better			
	M1	Use of $\operatorname{Var}(L) = \operatorname{E}(L^2) - \operatorname{E}(L)^2$ ft t	heir $E(L^2)$ and $E(L)$ provided $Var(L) > 0$		
	A1	awrt 0.436			