GCSE

MATHEMATICS

8300/1H

Higher Tier Paper 1 Non-Calculator
Mark scheme
November 2019
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

For confidentiality purposes acknowledgements of third-party material are published in a separate booklet which is available for free download from www.aqa.org.uk after the live examination series.

Copyright © 2019 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep \quad A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Question	Answer	Mark	Comments

1	250×0.85	B1	

$\mathbf{2}$	$x=0$	B1	

$\mathbf{3}$	$(6,7)$	B1	
$\mathbf{4}$ $16 x^{4}$ B1			

| | Says that the wrong line has been
 given
 or
 says that for the given reflection the
 image would be in the second
 quadrant (may be implied by
 sketch)
 or
 says that the given line is vertical
 or
 gives the coordinates of at least
 one image point under the given
 reflection
 or
 says that after the given reflection,
 a rotation 180 (centre (-1, -1)) or
 an enlargement, scale factor -1
 (centre (-1, -1$)$) is needed | B1 eg the line should be $y=-1$ |
| :--- | :--- | :--- | :--- |

5(a) cont	Additional Guidance	
	It is the wrong line/axis (of reflection)	B1
	It's not $x=-1$	B1
	The line should be horizontal	B1
	$y=-1$	B1
	$x=-1$ line drawn with explanation that it is incorrect	B1
	Q should be to the left of P	B1
	Correct line drawn, with indication that it should be that line	B1
	Correct statement with irrelevant statement eg It's the wrong line and Q is in the wrong place	B1
	Correct line drawn, but no explanation or equation given	B0
	$x=-1$ line drawn with no explanation that it is incorrect	B0
	It should be reflected in the y-axis	B0
	It is not a reflection in $x=-1$	B0
	Should be rotation about $y=-1$	B0
	They are not an equal distance from each other	B0
	It should be the point $x=-1$	B0
	Q is in the wrong place	B0
	It is a reflection in the x-axis then a translation by $\binom{0}{-2}$	B0
	Correct statement with incorrect statement eg It's the wrong line, it should be $x=-2$	B0
	If more than one image point is given, they must all be correct	

Question	Answer	Mark	Comments

5(b)			oe statement accept 'axis of rotation' or 'point'				B1			
		Additional Guidance								
		Allow origin or (0, 0) for O								
		Should be about O								B1
		There is no centre								B1
		It should be around a point								B1
		It doesn't give the coordinates								B1
		Should/could be 270° clockwise about O								B1
		Should/could be 270° clockwise								B0
		Should be rotation through 90° clockwise about O								B0
		It is a reflection 90° anticlockwise with centre O								B0
		It's not reflected on a point								B0
		Doesn't say which line you're turning around								B0
		Correct statement with incorrect statement eg It should give a centre of rotation at $(0,1)$								B0

| $\mathbf{6 (a)}$ | 64 | B1 | accept 4 ${ }^{3}$ |
| :---: | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | 4^{3} and incorrect value given
 eg $4^{3}=32$ | B0 | |

Question	Answer	Mark	Comments

6(b)	$-5-13$	B2	condone $-13-5$ B1 -5 as first term or ft their first term -8

7	60×4 or $4(a \times 60)$ or $4 a \times 60$ or $\frac{b}{a}=60$ or $\frac{4 b}{b / 60}$ or $4 b=240 a$ or $\frac{240 a}{a}$	M1	accept any multiplication signs	
	240	A1	Condone $\frac{240}{1}$	
	Additional Guidance			
	Correct answer found by substituting appropriate values for a and b			M1A1
	Incorrect answer found by substituting appropriate values for a and b			MOAO
	Award M1 for 60×4 or 240 in working, either as individual expressions or as part of longer expressions eg $4 \times 60=240$, answer $240 b$ eg $\frac{4 \times 60 \times a}{4 b}$			$\begin{aligned} & \text { M1A0 } \\ & \text { M1A0 } \end{aligned}$
	Do not award M1 for 240 within a list of multiples of 60 that continues beyond 240			

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments

9	Alternative method 1: working in terms of $\boldsymbol{\pi}$		
	$\pi(\times) 4^{2}(x) 10 \text { or } 160 \pi$ or $[502,503]$	M1	oe accept 3 or better for π accept 480 or 496
	$\begin{aligned} & \frac{2}{3}(x) \pi(x) 6^{3} \text { or } 144 \pi \\ & \text { or } \\ & {[452,453]} \end{aligned}$	M1	oe accept 3 or better for π accept 0.66 or 0.67 or better for $\frac{2}{3}$ accept 432 or 446(.4)
	160π and 144π or $[502,503]$ and $[452,453]$	A1	oe values accept 480 and 432 or 496 and $446(.4)$
	160π and 144π and cylinder or $[502,503]$ and $[452,453]$ and cylinder or cylinder is 16π greater	A1ft	ft correct decision for their 160π and their 144π with M1M1 scored accept 480 and 432 and cylinder or 496 and $446(.4)$ and cylinder
	Alternative method 2: working w	ut π	
	$4^{2}(x) 10$ or 160	M1	oe
	$\frac{2}{3}(x) 6^{3} \text { or } 144$	M1	oe accept 0.66 or 0.67 or better for $\frac{2}{3}$
	160 and 144	A1	oe values
	160 and 144 and cylinder	A1ft	ft correct decision for their 160 and their 144 with M1M1 scored
	Additional Guidance for this ques	is on	next page

9	Additional Guidance	
	Better than 3 for π could be $3.1,3.14,3.142$ or $\frac{22}{7}$	
	160π with incorrect method for hemisphere	M1M0A0A0
	144π with incorrect method for cylinder	M0M1A0A0
	160π and 144π with incorrect decision or no decision	M1M1A1A0
	160 and 144 with incorrect or no decision	M1M1A1A0
	Accept values given as fractions for the first A mark, but for the second A mark, they must have a common denominator. eg 160π and $\frac{432 \pi}{3}$ and cylinder eg $\frac{480}{3}$ and $\frac{432}{3}$ and cylinder	M1M1A1A0 M1M1A1A1
	Working with π for one value but not the other can only score M1 eg 160π and 144 (with or without a decision)	M1 only
	Do not allow M1 for a correct formula as part of an incorrect formula eg $\frac{1}{3} \times \pi \times 4^{2} \times 10$	M0

Question	Answer	Mark	Comments

Alternative method 1: total amount of each colour (judgement accepted that ratio is not 4:3)

$60 \div(2+1)$ or 20 or 40	M1	
$80+$ their 20 or 100	M1dep	
$28+2 \times$ their 20 or 68	M1dep	dep on first M1 only
100 and 68 and No	A1	

Alternative method 2: total of red and how much white should have been added or how much there should have been originally or how much there should be now

$60 \div(2+1)$ or 20 or 40	M1	
$80+$ their 20 or 100	M1dep	
their $100 \div 4 \times 3$ or 75	M1dep	dep on M2
$(75-2 \times 20=) 35$ and No or 40 and $(75-28=) 47$ and No or 75 and 68 and No	A1	comparing 35 to 28

Alternative method 3: total of white and how much red should have been added or how much there should have been originally or how much there should be now

$60 \div(2+1)$ or 20 or 40	M1	
$28+2 \times$ their 20 or 68	M1dep	
their $68 \div 3 \times 4$ or $90 \frac{2}{3}$ or $\frac{272}{3}$	M1dep	dep on M2
$\left(90 \frac{2}{3}-20=\right) 70 \frac{2}{3}$ and No		comparing $70 \frac{2}{3}$ to 80
or		
20 and $\left(90 \frac{2}{3}-80=\right) 10 \frac{2}{3}$ and No	A1	
or $90 \frac{2}{3}$ and 100 and No		

Question	Answer	Mark	Comments

co	Alternative method 4: total of red and what it should be for total amount of paint			
	$60 \div(2+1)$ or 20 or 40	M1		
	$80+$ their 20 or 100	M1dep		
	$(60+80+28) \div(4+3) \times 4$ or 96	M1		
	100 and 96 and No	A1		
	Alternative method 5: total of white and what it should be for total amount of paint			
	$60 \div(2+1)$ or 20 or 40	M1		
	$28+2 \times$ their 20 or 68	M1dep		
	$(60+80+28) \div(4+3) \times 3$ or 72	M1		
	68 and 72 and No	A1		
	Additional Guidance			
	20 from $80 \div 4$ is incorrect			
	With no incorrect working, 'He should have added 76 red and 32 white' implies full marks			M1M1M1A1
	'No' can be implied, eg on alt 1 accept 100 and 68 and 'He needs 7 more white'			M1M1M1A1
	Condone dubious notation eg 20:40+80:28=100:68, so No			M1M1M1A1
	Ignore further work if 100 and 68 and No are seen			M1M1M1A1
	Only works out the amounts of red and white there should be for the total amount of paint, eg, $168 \div 7 \times 4=96$ and $168 \div 7 \times 3=72$			M0M0M1A0

Question	Answer	Mark	Comments

11(a)	10^{5} or 25000	M1	oe correct value not in standard form eg 25×10^{3}	
	2.5×10^{4}	A1		
	Additional Guidance			
	Condone $2.5 \cdot 10^{4}$			M1A1
	Condone different spacing or commas eg 25000 or 250,00			M1A0

Question	Answer	Mark	Comments

$\mathbf{1 4}$	90	B1	

15	All correct	B3	B2 for 3 correct B1 for 1 or 2 correct		
	Additional Guidance				
		True	May be true	Not true	
	The quadrilateral is a rectangle		\checkmark		
	The quadrilateral is a parallelogram	\checkmark			
	The quadrilateral is a rhombus			\checkmark	
	The quadrilateral is a kite			\checkmark	

Question	Answer	Mark	Comments

Question	Answer	Mark	Comments
17 $\binom{-6}{17}$ B1			

Question	Answer	Mark	Comments

$\begin{gathered} 18 \\ \text { cont } \end{gathered}$	Alternative method 3		
	$6(x+10)$ or $6 x+60$	M1	multiplication of rhs by 3
	$x+15=6 x+60$	M1dep	correct expansion
	$15-60=6 x-x \text { or }-45=5 x$ or $60-15=x-6 x \text { or } 45=-5 x$	M1dep	collects terms
	-9	A1	$\begin{array}{lr} \text { SC2 } & -3 \text { from } 2 x+10 \\ \text { or } & 1 \text { from } 6 x+10 \end{array}$

19(a)	Team A and states that the median is higher or Team A and states that the averages are 9.8 and 9.7	B1	
	Additional Guidance		
	If values are given for the medians they must be correct; Team A 9.8 and Team B 9.7		
	Accept medium or middle or midpoint for median		
	Do not accept answers which also mention other statistical measures		
	Team A and 'The median is further'		B1
	Team A and ' A is 9.8 and B is 9.7 '		B1
	Team A and ' A is 9.8'		B0
	Team A and 'The average is higher'		B0

Question	Answer	Mark	Comments

19(b)	States that the interquartile (range) is lower	B1	oe accept 'narrower b	
	Additional Guidance			
	If values are given for the interquartile ranges they must be correct; Team A 0.4 and Team B 0.5			
	Apart from stating that the ranges are equal, do not accept answers which also mention other statistical measures			
	The box is smaller			B1
	The distance between LQ and UQ is smaller			B1
	The box plot is smaller			B0
	0.4 and 0.5 without IQR mentioned			B0

| 20(a) | $\frac{8}{21}$ | B1 | oe fraction, decimal or percentage |
| :---: | :---: | :---: | :---: | :---: |
| | Additional Guidance | | |
| | Ignore attempts to convert a correct fraction to a decimal or percentage | B1 | |

| 20(b) | $\frac{4}{15}$ | B1 | oe fraction, decimal or percentage |
| :--- | :--- | :---: | :---: | :---: |
| | Additional Guidance | | |
| | Ignore attempts to convert a correct fraction to a decimal or percentage | B1 | |

Question	Answer	Mark	Comments

22	$\frac{10-0}{6-4}$ or $\quad(m=) \frac{10}{2}$ or $-3-(6-4)$ or $-3-2$ or $4-(6-(-3))$ or -5 or $(-5,0)$ and $\frac{10-0}{-3-(-5)}$ or $(m=) \frac{10}{2}$ or $0=4 m+k \text { and } 10=6 m+k$ and $10-0=6 m-4 m$ or $2 m=10$ or $(m=) 5$	M1	oe method to find the line implied by $y=5 x \ldots$ any letters	nt of either
	$\begin{aligned} & 10=\text { their } 5 \times(-3)+c \\ & \text { or }(c=) 5 \times(6-(-3))-20 \\ & \text { or }(c=) 25 \\ & \text { or } y-10=\text { their } 5(x-(-3)) \\ & \text { or } y=5(x+9)-20 \\ & \text { or } 5 x+25 \end{aligned}$	M1dep	oe	
	$y=5 x+25$	A1		
	Additional Guidance			
	Do not allow further incorrect work, eg $y=5 x+25$ and then $y=x+5$			M1M1A0

Question	Answer	Mark	Comments

23(a)	$(5 x-4)(x+2)$	B2	brackets in either order B1 factorisation to $(5 x+a)(x+b)$ where $a b=-8$ or $a+5 b=6$ or $\frac{1}{5}(5 x-4)(5 x+10)$	
	Additional Guidance			
	Ignore any attempt to solve $(5 x-4)(x+2)=0$			
	Attempt at further factorisation, eg $(5 x-4)(x+2)=5(x-0.8)(x+2)$			B

23(b)	$(x+2)(x+7)$	M1	brackets in either order
	$(x+2)(x-2)$	M1	brackets in either order
	Additional Guidance		
	Further cancelling, eg $\frac{x+7}{x-2}=\frac{7}{2}$		
	A1		

Question	Answer	Mark	Comments

24	Alternative method 1		
	$(\sqrt{18}=) \sqrt{9} \sqrt{2} \text { or } 3 \sqrt{2}$ or $(\sqrt{50}=) \sqrt{25} \sqrt{2} \text { or } 5 \sqrt{2}$	M1	oe simplifies one surd implied by $\frac{28}{5 \sqrt{2}}$
	$\frac{28}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}} \text { or } \frac{28 \sqrt{50}}{50}$	M1	oe rationalises second term $\frac{28}{5 \sqrt{2}} \times \frac{5 \sqrt{2}}{5 \sqrt{2}} \text { or } \frac{140 \sqrt{2}}{50}$ or $\frac{14 \sqrt{2}}{5}$ implies M1M1
	$\begin{aligned} & 3 \sqrt{2}-\frac{140 \sqrt{2}}{50} \\ & \text { or } \frac{150 \sqrt{2}-140 \sqrt{2}}{50} \text { or } \frac{10 \sqrt{2}}{50} \end{aligned}$	M1dep	dep on M2 oe both terms rational with a common surd
	$\frac{\sqrt{2}}{5}$ or $a=2, b=5$	A1	oe in the form $\frac{\sqrt{a}}{b}$ eg $\frac{\sqrt{50}}{25}$ or $\frac{\sqrt{200}}{50}$
	The scheme for this question	ues on	e next page

Question	Answer	Mark	Comments

$\begin{gathered} 24 \\ \text { cont } \end{gathered}$	Alternative method 2			
	$(\sqrt{18}=) \sqrt{9} \sqrt{2}$ or $3 \sqrt{2}$ or $(\sqrt{50}=) \sqrt{25} \sqrt{2}$ or $5 \sqrt{2}$ or $\frac{\sqrt{18} \sqrt{50}}{\sqrt{50}} \text { or } \frac{\sqrt{900}}{\sqrt{50}}$	M1	oe simplifies one surd implied by $\frac{28}{5 \sqrt{2}}$ or changes first term to match second	
	$\begin{aligned} & \frac{\sqrt{900}}{\sqrt{50}}-\frac{28}{\sqrt{50}} \\ & \text { or } \frac{3 \sqrt{2} \times 5 \sqrt{2}}{\sqrt{50}}-\frac{28}{\sqrt{50}} \\ & \text { or } \frac{30-28}{\sqrt{50}} \text { or } \frac{2}{\sqrt{50}} \end{aligned}$	M1dep	oe common denominator	
	$\frac{30-28}{\sqrt{50}} \times \frac{\sqrt{50}}{\sqrt{50}}$ or $\frac{2 \sqrt{50}}{50}$	M1dep	oe rationalisation of a single term	
	$\frac{\sqrt{2}}{5}$ or $a=2, b=5$	A1	oe in the form $\frac{\sqrt{a}}{b}$ eg $\frac{\sqrt{50}}{25}$ or $\frac{\sqrt{200}}{50}$	
	Additional Guidance			
	Ignore further work after a correct value, eg $\frac{\sqrt{50}}{25}=\sqrt{2}$			M1M1M1A1

25(a)	or 100%	oe fraction, decimal or percentage eg $\frac{56}{56}$	
	Additional Guidance		
	Do not accept answers in words only, eg 'Certain'	B0	

Question	Answer	Mark	Comments

25(b)	Alternative method 1			
	$\frac{3}{8} \text { and } \frac{2}{7} \text { or } \frac{6}{56}$	M1	may be seen on a tree diagram oe fraction, decimal or percentage eg $\frac{3}{28}$	
	$1-\left(\frac{3}{8} \times \frac{2}{7}\right)$ or $1-\frac{6}{56}$	M1dep		
	$\frac{50}{56}$	A1	oe fraction, decimal or eg $\frac{25}{28}$	
	Alternative method 2			
	$\frac{5}{8}$ and $\frac{4}{7}$ or $\frac{20}{56}$ or $\frac{5}{8}$ and $\frac{3}{7}$ or $\frac{3}{8}$ and $\frac{5}{7}$ or $\frac{15}{56}$ or $\frac{30}{56}$	M1	may be seen on a tree diagram oe fraction, decimal or percentage	
	$\begin{aligned} & \frac{5}{8} \times \frac{4}{7}+2\left(\frac{5}{8} \times \frac{3}{7}\right) \\ & \text { or } \frac{20}{56}+2\left(\frac{15}{56}\right) \\ & \text { or } \frac{20}{56}+\frac{30}{56} \end{aligned}$	M1dep	oe eg $\frac{5}{8} \times \frac{4}{7}+\frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}$	
	$\frac{50}{56}$	A1	oe fraction, decimal or percentage eg $\frac{25}{28}$	
	Additional Guidance			
	Condone a correct pair of fractions seen in a multiplication chain for M1 eg $\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$ or $\frac{5}{8} \times \frac{2}{7} \times \frac{3}{8} \times \frac{4}{7}$ (includes $\frac{5}{8} \times \frac{4}{7}$)			M1

Question	Answer	Mark	Comments

26	Alternative method 1: using the radius			
	$2 \pi r$	M1		
	$2 \pi r \times \frac{x}{360}$	M1dep	oe length of arc	
	$2 \pi r=2 \pi r \times \frac{x}{360}+2 r$ or $\pi=\frac{\pi x}{360}+1$ or $2 \pi=\frac{2 \pi x}{360}+2$	M1dep	oe equation	
	$\begin{aligned} & \frac{360(\pi-1)}{\pi} \text { or } \frac{360 \pi-360}{\pi} \\ & \text { or } 360-\frac{360}{\pi} \end{aligned}$	A1	oe expression in throughout	celled
	Alternative method 2: using	meter		
	πd	M1	oe	
	$\pi d \times \frac{x}{360}$	M1dep	oe length of arc	
	$\pi d=\pi d \times \frac{x}{360}+d$ or $\pi=\frac{\pi x}{360}+1$	M1dep	oe equation	
	$\begin{aligned} & \frac{360(\pi-1)}{\pi} \text { or } \frac{360 \pi-360}{\pi} \\ & \text { or } 360-\frac{360}{\pi} \end{aligned}$	A1	oe expression in throughout	celled
		ditional	uidance	
	Ignore attempts to simplify, cand	expand a	correct expression	M1M

Question	Answer	Mark	Comments

27(a)	Alternative method 1		
	$(x-3)^{2}$	M1	may be preceded by $y=$
	3	A1	
	Alternative method 2		
	$\begin{aligned} & \left(8=x^{2}-6 x+17 \text { and }\right) \\ & x^{2}-6 x+9(=0) \end{aligned}$	M1	
	3	A1	

$\mathbf{2 7 (b)}$	$(x+2)^{2}-4+b$ or $-4+b=8$	M1	
	12	A1	SC1 12 from $(x-2)^{2}-4+b$

Question	Answer	Mark	Comments

29	Alternative method 1		
	$\begin{aligned} & \left(\sin 30^{\circ}=\right) \frac{1}{2} \\ & \text { or }\left(\cos 30^{\circ}=\right) \frac{\sqrt{3}}{2} \\ & \text { or }\left(\tan 30^{\circ}=\right) \frac{1}{\sqrt{3}} \text { or } \frac{\sqrt{3}}{3} \\ & \text { or }\left(\frac{1 / 2}{\sqrt{3} / 2}\right) \end{aligned}$	M1	may be seen beside question
	$5\left(\frac{1}{2}\right) \times \frac{\sqrt{3}}{2} \times 8\left(\frac{1}{\sqrt{3}}\right)$ or $5\left(\frac{1}{2}\right) \times \frac{\sqrt{3}}{2} \times 8\left(\frac{1 / 2}{\sqrt{3} / 2}\right)$ or $\frac{5}{2} \times \frac{\sqrt{3}}{2} \times \frac{8 \sqrt{3}}{3}$	M1dep	oe multiplication string with all correct values
	$\frac{40 \sqrt{3}}{4 \sqrt{3}}$ or $\frac{40 \sqrt{3} \sqrt{3}}{12}$	M1dep	oe single fraction with roots rationalised or able to be cancelled
	10 from correct working	A1	
	Alternative method 2: substitu	$\frac{\sin }{c}$ for	and cancelling
	$5 \sin 30^{\circ} \times \cos 30^{\circ} \times 8 \frac{\sin 30^{\circ}}{\cos 30^{\circ}}$	M1	
	$40 \sin ^{2} 30^{\circ}$	M1dep	oe cancels $\cos 30^{\circ}$
	$40\left(\frac{1}{2}\right)^{2}$	M1dep	oe
	10 from correct working	A1	

