GCSE

MATHEMATICS

8300/2H

Higher Tier Paper 2 Calculator
Mark scheme
June 2021
Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]Copyright © 2021 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $\mathrm{a} \leq$ value $<\mathrm{b}$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	$x-5$	B1	

Q	Answer	Mark	Comments
$\mathbf{2}$	$1: 2$	B1	

Q	Answer	Mark	Comments
$\mathbf{3}$	$\frac{16}{81}$	B1	

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{4}$	SSS	B1	

Mark scheme and Additional Guidance continue on next page

$\begin{gathered} 9 \\ \text { cont } \end{gathered}$	Alternative method 3 Volume of ball compared with volume that could be filled +5000			
	$\begin{aligned} & 4 \div 3 \times 15^{3} \times \pi \text { or }[4488,4500] \pi \\ & \text { or }[14092,14139] \end{aligned}$	M1	oe allow 1.33 or better	
	[58,60$] \times 160$ or [9280, 9600]	M1	oe	
	$\begin{aligned} & \text { their }[9280,9600]+5000 \\ & \text { or }[14280,14600] \end{aligned}$	M1dep	dep on 2nd M1	
	$\text { [14092, } 14 \text { 139] }$ and [14280, 14600] and Yes	A1		
	Additional Guidance			
	Accept $\frac{4}{3} \pi 15^{3}$ without multiplication signs			
	Condone use of 1.3 for up to M3 if 1.3 shown			
	Up to M3 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
	Using an incorrect power eg $15^{2}, 15 \pi^{3},(15 \pi)^{3}$ or omitting π unless recovered			1st M0
	NB 56.(59...) or 56.6 or 57 coming from $5000 \div 88.35 \ldots$			M1M1M0
	Yes can be implied eg Alt $157<60$			M3A1

Q	Answer	Mark	Comments	
10	Sometimes true Always true Always true Never true	B4	B1 for each	
	Additional Guidance			
	Allow any unambiguous indication eg all 4 correct boxes contain a cross with all other boxes blank			B4
	A row with one tick and some crosses - mark the tick			
	A row with more than one tick is B0 for that row			
	Mark the boxes not the working lines			

Q	Answer	Mark	Com
11(a)	Any one of 0.24 or 0.19 or 0.22 in the correct cell	M1	oe fraction, decim eg $\frac{36}{150}$ or $\frac{38}{200}$ implied by any co three values
	At least two of their relative frequencies plotted accurately	M1dep	$\pm \frac{1}{2} \text { square }$
	$(150,0.24),(200,0.19)$ and (250, 0.22) plotted and graph completed with straight lines	A1	$\pm \frac{1}{2}$ square allow dotted or so
	Additional Guidance		
	Mark intention for straightness of lines		
	Ignore any continuation of line after the last point or any other lines drawn on the graph, for example a line of best fit		

Q	Answer	Mark	Comme	
11(b)	0.22	B1ft	oe fraction, decimal or percentage $\text { eg } \frac{55}{250}$ ft their relative frequency for 250 trains (>0 and <1) given in table or plotted on graph	
	Additional Guidance			
	The mark may be awarded for a correct restart or a follow through from their table or a follow through from their graph			
	Ignore attempts to convert a correct relative frequency once seen in (b)			
	NB $\frac{166}{750}=0.2213 \ldots$ is incorrect (unless it is given as their relative frequency for 250 trains)			B0ft

Q	Answer	Mark	Comments
	Alternative method 1 Shows algebraically that the angles are equal		
	$4 x+40$	M1	may be embedded or on the diagram
	$x+2(2 x+20)$ or $x+4 x+40$	M1	
	$x+4 x+40=5 x+40$ and Yes	A1	
12	Alternative method 2 Derives and solves an equation for angles at a point and substitutes into $5 x+40$ or $x+2(2 x+20)$		
	$4 x+40$	M1	may be embedded or on the diagram or implied eg implied by $10 x+80=360$
	$x+2(2 x+20)+5 x+40=360$ or $x+4 x+40+5 x+40=360$ or $(x=) 28$	M1	oe equation eg $10 x+80=360$ ($x=$) 28 may be on the diagram
	$140+40=180$ and $Y e s$ or $28+152=180$ and Yes	A1	oe must obtain ($x=$) 28 from one expression and substitute $(x=) 28$ into a different expression
	Alternative method 3 Assumes line is a diameter. Derives and solves an equation for angles on a line using $5 x+40$ and substitutes into $x+2(2 x+20)$ or $x+2(2 x+20)+5 x+40$		
	$5 x+40=180$	M1	
	$\begin{aligned} & (x=)(180-40) \div 5 \\ & \text { or }(x=) 28 \end{aligned}$	M1dep	oe $(x=) 28$ may be on the diagram
	$28+152=180$ and $Y e s$ or $28+152+140+40=360$ and Yes	A1	oe must obtain ($x=$) 28 from one expression and substitute $(x=) 28$ into a different expression

Mark scheme and Additional Guidance continue on next two pages

$\begin{gathered} 12 \\ \text { cont } \end{gathered}$	Alternative method 4 Assumes line is a diameter. Derives and solves an equation for angles on a line using $x+2(2 x+20)$ and substitutes into $5 x+40$ or $x+2(2 x+20)+5 x+40$		
	$x+2(2 x+20)=180$ or $x+4 x+40=180$	M1	
	$\begin{aligned} & (x=)(180-40) \div 5 \\ & \text { or }(x=) 28 \end{aligned}$	M1dep	oe $(x=) 28$ may be on the diagram
	$140+40=180 \text { and } \mathrm{Yes}$ or $28+152+140+40=360 \text { and }$ Yes	A1	oe must obtain ($x=$) 28 from one expression and substitute ($x=$) 28 into a different expression
	Alternative method 5 Assum	e is a di on a line/	meter. Derives and solves two equations gles at a point
	$5 x+40=180$ or $x+2(2 x+20)=180$ or $x+4 x+40=180$ or $x+2(2 x+20)+5 x+40=360$ or $x+4 x+40+5 x+40=360$	M1	
	$\begin{aligned} & (x=)(180-40) \div 5 \\ & \text { or }(x=) 28 \end{aligned}$	M1dep	oe $(x=) 28$ may be on the diagram
	Obtains ($x=$) 28 from two equations for angles on a line/ angles at a point and Yes	A1	

Additional Guidance is on the next page

$\begin{gathered} 12 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Choose the scheme that favours the student	
	Up to M2 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts	
	Correct response with other incorrect work	M1M1A0
	Alt $12(2 x+20)=4 x+20$ followed by $x+4 x+20$ Alt $1 x+4 x+20$ with $2(2 x+20)=4 x+20$ not seen Apply marks in a similar way in alts 2,4 and 5	M0M1 MOMO
	$(x=) 28$	M1M1
	Allow ($x=$) 28 to be embedded	M1M1
	No method marks scored with a value of $x(\neq 28)$ substituted into $5 x+40$ and $x+2(2 x+20)$ giving the same value	MOMOAO
	Yes can be implied eg Alt $1 x+4 x+40=5 x+40$ and It is a diameter	M1M1A1

Q	Answer	Mark	Comments	
	Alternative method 1			
	$6 \times 3+c=19$	M1	oe eg $18+c=19$	
	$(c=) 19-6 \times 3$ or $(c=) 1$	M1dep	oe implied by $(0,1)$	
	$y=6 x+1$	A1	SC1 $y=6 x+c \quad c \neq 1$	
	Alternative method 2			
	$y-19=6(x-3)$	M1	oe	
	$y-19=6 x-18$	M1dep	oe correct equation with brackets expanded	
	$y=6 x+1$	A1	SC1 $y=6 x+c \quad c \neq 1$	
	Additional Guidance			
13	Allow $y=6 \times x+1$			
	$6 x+1$ on answer line, $y=6 x+1$ seen in working			M1M1A1
	$6 x+1$ on answer line, $y=6 x+1$ not seen in working			M1M1A0
	$m=6, c=1$ on answer line, $y=6 x+1$ seen in working			M1M1A1
	$m=6, c=1$			M1M1A0
	$y=m x+1$			M1M1A0
	Allow embedded value for c eg $19=6 \times 3+1$			M1M1A0
	$y=6 x+c$			SC1
	$y=6 x$			SC1
	$6 x+c$ on answer line with $c \neq 1, y=6 x+c$ seen in working			SC1
	$6 x+c$ on answer line with $c \neq 1, y=6 x+c$ not seen in working			MOMOAO

Q	Answer	Mark		Comme
14(a)	4200×1.12^{20}	M1	oe allow $4200 \times$	$9.64,9.6$
	40514(...) or 40515 or 40500 or 40510 or 40489 or 40509 or 40548	A1		
	Additional Guidance			
	Year on year calculations Consistently rounding down to nearest integer leads to 40489 Consistently rounding to nearest integer leads to 40509 Consistently rounding up to nearest integer leads to 40548			

Q	Answer	Mark	Comme	
15(b)	Alternative method 1 If using alt 1 in (a)			
	their $k \times 5^{2}$		oe their k from (a)	
	21.25	A1ft	oe correct or ft their $k \times 5^{2}$	
	Alternative method 2 If using alt 2 in (a)			
	$5^{2} \div$ their c		oe their c from (a)	
	21.25		oe correct or $\mathrm{ft} 5^{2} \div$ their c do not follow through an approximated value for $\frac{100}{85}$	
	Additional Guidance			
	L a 21.25 on answer line			M1A0
	Alt 2 (a) $1.18 L=D^{2} \quad$ (scores 3 marks in (a)) (b) $25 \div 1.18=21.19$			M1A0

Q	Answer	Mark	Comments
16(a)	$\sqrt{3} x$		B1

Q	Answer	Mark	Comments
16(b)	x might be a whole number	B1	

Q	Answer	Mark	Comments
17(a)	Alternative method 1		
	$\begin{aligned} & \frac{2}{11} \times \frac{5}{9} \text { or } \frac{10}{99} \\ & \text { or } \\ & \frac{9}{11} \times \frac{4}{9} \text { or } \frac{36}{99} \end{aligned}$	M1	oe fractions, decimals or percentages
	$\begin{aligned} & \frac{2}{11} \times \frac{5}{9}+\frac{9}{11} \times \frac{4}{9} \\ & \text { or } \frac{10}{99}+\frac{36}{99} \end{aligned}$	M1dep	oe fractions, decimals or percentages
	$\frac{46}{99}$	A1	oe fraction, decimal or percentage allow 0.465 or better allow 46.5% or better SC2 $\frac{54}{99}$ oe

Mark scheme and Additional Guidance continue on next page

17(a) cont	Alternative method 2			
	$\begin{aligned} & \frac{2}{11} \times \frac{4}{9} \text { or } \frac{8}{99} \\ & \text { or } \\ & \frac{9}{11} \times \frac{5}{9} \text { or } \frac{45}{99} \end{aligned}$	M1	oe fractions, decimals or percentages	
	$1-\frac{2}{11} \times \frac{4}{9}-\frac{9}{11} \times \frac{5}{9}$ or $1-\frac{8}{99}-\frac{45}{99}$ or $1-\frac{53}{99}$	M1dep	oe fractions, decimals or percentages	
	$\frac{46}{99}$	A1	oe fraction, decimal or percentage allow 0.465 or better allow 46.5% or better SC2 $\frac{54}{99}$ oe	
	Additional Guidance			
	For M marks, accept values given as recurring decimals or correctly rounded to 2 dp or better eg Alt $10.18 \times 0.56+0.818 \times 0.44$			M1M1
	M1 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
	Ignore conversion attempt if correct answer seen			

Q	Answer	Mark	Comments	
17(b)	$\frac{9}{11} \times \frac{8}{10}$	M1	oe fractions, decimals or percentages	
	$\frac{72}{110}$ or $\frac{36}{55}$	A1	oe fraction, decimal or percentage allow [0.65, 0.655] allow [65\%, 65.5\%]	
	Additional Guidance			
	For M1, accept $\frac{9}{11}$ given as a recurring decimal or correctly rounded to 2 dp or better$\text { eg } 0.82 \times 0.8$			M1
	Ignore conversion attempt after correct answer seen			

Q	Answer	Mark	Comments
19(a)	6 seconds	B1	

Q	Answer	Mark	Comments	
19(b)	Correct tangent drawn at 6 seconds	B1		
	Correct gradient for their tangent	B1ft	ft their tangent, which must be an increasing straight line	
	m / s	B1	oe eg metres per second or mps	
	Additional Guidance			
	If no tangent is drawn the maximum mark possible is BOB0B1			
	Allow the units to be given in working lines if no units on the answer line			

Q	Answer	Mark	Comments
$\mathbf{2 0}$	50 cm	B1	

Q	Answer	Mark	Comments
22	Alternative method 1		
	All three of 1,8 and $1,2,4,8$ and $1,3,5,7,9$ or all three of 2, 4 and 5	B2	B1 any two correct do not allow 2, 4 or 5 from an incorrect list of numbers
	their $2 \times$ their $4 \times$ their 5 or 40	M1	working out the number of possible codes ft their non-zero number of options for each digit implied by $\frac{1}{\text { their } 2} \times \frac{1}{\text { their } 4} \times \frac{1}{\text { their } 5}$
	$\frac{1}{40}$	A1ft	oe fraction, decimal or percentage ft their non-zero number of options for each digit
	Alternative method 2		
	All three of $\frac{1}{2}$ and $\frac{1}{4}$ and $\frac{1}{5}$	B2	B1 any two correct oe fractions, decimals or percentages do not allow $\frac{1}{2}, \frac{1}{4}$ or $\frac{1}{5}$ from an incorrect list of numbers
	$\text { their } \frac{1}{2} \times \text { their } \frac{1}{4} \times \text { their } \frac{1}{5}$	M1	oe fractions, decimals or percentages allow their $\frac{1}{2}$ to be 1 their $\frac{1}{4}$ must be <1 their $\frac{1}{5}$ must be <1
	$\frac{1}{40}$	A1ft	oe fraction, decimal or percentage ft their probabilities

Additional Guidance is on the next page

22 cont	Additional Guidance	
	If 0 is taken to be a cube number, $\frac{1}{3} \times \frac{1}{4} \times \frac{1}{5}=\frac{1}{60}$	B1M1A1ft
	8,9 and $1,2,4,8$ and $1,3,5,7,9$ $\frac{1}{2} \times \frac{1}{4} \times \frac{1}{5}=\frac{1}{40}$	B1M1A1ft
	Ignore conversion attempt after correct answer seen	B1
	Allow $1^{3}, 2^{3}$ for 1,8	

Q	Answer	Mark	Comments	
24	$\frac{731}{x}+\frac{287}{x-24}=2$	M1	oe equation	
	$731(x-24)+287 x$ or $731 x-17544+287 x$	M1dep	oe allow with denominator $x(x-24)$ oe	
	$2 x^{2}-1066 x+17544(=0)$ or $x^{2}-533 x+8772(=0)$	A1	oe eg $x^{2}-533 x=-8772$	
	$\begin{aligned} & \frac{-(-1066) \pm \sqrt{(-1066)^{2}-4 \times 2 \times 17544}}{2 \times 2} \\ & \text { or } \frac{1066 \pm \sqrt{1136356-140352}}{2 \times 2} \\ & \text { or } \frac{1066 \pm \sqrt{996004}}{2 \times 2} \\ & \text { or } \frac{1066 \pm 998}{2 \times 2} \\ & \text { or }(2 x-34)(x-516) \\ & \text { or } \\ & 17 \text { and } 516 \end{aligned}$	M1	ft their 3-term quadr oe eg $\frac{-(-533) \pm \sqrt{(-533)^{2}}}{2 \times 1}$ or $\frac{533 \pm \sqrt{284089}}{2 \times 1}$ or $\frac{533 \pm \sqrt{249001}}{2 \times 1}$ or $\frac{533 \pm 499}{2}$ or $(x-17)(x-516)$	$4 \times 1 \times 8772$ 5088
	516	A1	must discard 17	
	Additional Guidance			
	First M1 may be awarded for correct work, with no or incorrect answer, even if this is seen amongst multiple attempts			
	3rd M1 Allow ft of their 3-term quadratic even if discriminant is $\leqslant 0$			
	In quadratic formula, allow eg 1066^{2} for (-1066) ${ }^{2}$			

Q	Answer	Mark	Comments
25	$(x+7)^{2}$.	M1	
	$(x+7)^{2}-7^{2}+52$ or $(x+7)^{2}-49+52$ M1dep or $(x+7)^{2}+3$		
	M2 seen and $(-7,3)$	A1	
	Additional Guidance		
	Answer from other methods or with no method seen		MOMOAO
	Allow $(x+7)(x+7)$ for $(x+7)^{2}$ throughout		
	Condone inclusion of $=0$ in all working		
	Ignore any solution attempt for $(x+7)^{2}+3=0$		

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

