

Mark Scheme (Result)

November 2021

Pearson Edexcel GCE Further Mathematics Advanced Level in Further Mathematics Paper 4B 9FM0/4B

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Publications Code 9FM0_4B_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol√ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Question	Scheme	Marks	AOs		
1(a)	s = 4	B1	1.1b		
_(**)	t = 4.5	B1	1.1b		
		(2)			
(b)	Because there are <u>tied ranks</u> .	B1	2.4		
		(1)			
(c)	$H_0: \rho_s = 0 \qquad H_1: \rho_s > 0$	B1	2.5		
	CV = 0.7143	B1	1.1b		
	$r_s = 0.7106$ does not lie in the critical region.	M1	2.1		
	There is insufficient evidence to suggest that the higher the rank in the History test, the higher the rank in the Geography test (oe).	A1	2.2b		
		(4)			
	(7 marks)				
	Notes				
(a)	B1: cao B1: cao				
(b)	B1: Correct explanation				
(c)	 B1: Both hypotheses correct with correct notation (must use ρ_s or ρ) B1: Correct critical value 0.7143 or better M1: Drawing a correct inference using their CV and 0.7106 A1: Drawing a correct inference (condone "marks" instead of ranks) in context using their CV and 0.7106 				

Question	Scheme	Marks	AOs
2(a)	$H_0: \mu_{b(lue)} = \mu_{w(hite)} + 5$ $H_1: \mu_{b(lue)} > \mu_{w(hite)} + 5$	B1	2.1
	$s.e. = \sqrt{\frac{2.6^2}{90} + \frac{2.4^2}{80}}$	M1	1.1b
	$z = \frac{39.5 - 33.7 - 5}{\sqrt{\frac{2.6^2}{90} + \frac{2.4^2}{80}}} = 2.085773$ awrt 2.09	M1 A1	3.1b 1.1b
	CV = 2.3263 [or <i>p</i> -value = 0.01849]	B1	1.1b
	Not significant, insufficient evidence to support Nissim's claim.	A1	2.2b
		(6)	
(b)	Use the t - test or (Since sample sizes are large,) use s^2 as an approximation to σ^2	B1	2.4
		(1)	
(c)	Since sample size is large, by the Central Limit Theorem, sample means will be (approximately) normally distributedso no effect as the calculations in part (a) can still be	B1	2.4
	carried out.	dB1	3.2b
		(2)	
	(9 marks)		
	Notes		
(a)	 B1: Both hypotheses (oe) correct with correct notation (if using μ_x and μ_y these must be defined). M1: Calculation of standard error M1: Standardising using normal distribution test statistic for difference of two means with known variance A1: awrt 2.09 B1: Correct critical value 2.3263 or better A1: Drawing a correct inference in context 		
(b)	B1: Correct explanation		
(c)	B1: Understanding that the assumptions required for the hyposample means follow a normal distribution dB1: (dep on previous B1) Correct evaluation	thesis test,	by CLT

Question	Scheme	Marks	AOs
3(a)	$F(5) + (1 - F(8))$ $\left[\frac{3}{4} + \left(1 - \frac{15}{16}\right)\right]$	M1	2.1
	$=\frac{13}{16}$	A1	1.1b
		(2)	
(b)	$F(m) = 0.5 \qquad \left[1.25 - \frac{2.5}{m} = 0.5 \right]$	M1	1.1b
	$m = \frac{10}{3}$	A1	1.1b
		(2)	
(c)	$f(x)[=\frac{d}{dx}(F(x))] = 2.5x^{-2}$	M1	2.1
	$f(x)[=\frac{d}{dx}(F(x))] = 2.5x^{-2}$ $E(X^{2})[=\int_{2}^{10} x^{2}f(x) dx] = \int_{2}^{10} 2.5 dx$	M1	1.1b
	= 20	A1	1.1b
		(3)	
(d)(i)	2 10	M1	1.1b
(ii)	2 and 10 correctly labelled on horizontal axis	A1	2.1
(11)	Therefore positive skew.	A1	2.2b
		(3)	
		(10) marks)
	Notes III (F(2))	E(5)\3	
(a)	M1: Equivalent correct probability statement, e.g. $[1 - (F(8) - A)]$ and $[1 - (F(8) - A)]$ oe	- r (3))]	
(b)	M1: Use of $F(m) = 0.5$ A1: $\frac{10}{3}$ oe		
(c)	M1: Realising that $f(x)$ is required and attempting to differentiate $F(x)$ M1: Use of $\int_{2}^{10} x^{2} f(x) dx$ A1: 20 cao		
(d)(i) and	M1: Correct shape		
(ii)	A1: Correct labelsA1: Positive skew provided M1 scored		
	111. I obitive blew provided in a beoled		

(b) S ₂ b a t:	s elevation increases, temperature $ \frac{1}{xt} = -0.959\sqrt{8820655 \times 444.7} = -60 $ $ = \frac{'-60062'}{8820655} = -0.006809] $ $ = \frac{94.62}{20} - b' \frac{28130}{20} = 14.308] $ $ = 14.3 - 0.00681x * $ $ w = \frac{x}{1000} \rightarrow t = 14.3 - 6.81w $ $ 44.7(1 - (-0.959)^2) \text{ or } 444.7 - \frac{(-608)^2}{888} = 12.3000000000000000000000000000000000000$	0 062.38727]	B1 (1) M1 M1 M1 A1cso* (4) B1 (1) B1cso*	3.4 2.1 1.1b 1.1b 2.2a 3.3
(c) [v	$= \frac{'-60\ 062'}{8\ 820\ 655} [= -0.006809]$ $= \frac{94.62}{20} - b' \frac{28\ 130}{20} [= 14.308]$ $= 14.3 - 0.00681x *$ $w = \frac{x}{1000} \rightarrow] t = 14.3 - 6.81w$		M1 M1 M1 A1cso* (4) B1 (1)	1.1b 1.1b 2.2a
(c) [v	$= \frac{'-60\ 062'}{8\ 820\ 655} [= -0.006809]$ $= \frac{94.62}{20} - b' \frac{28\ 130}{20} [= 14.308]$ $= 14.3 - 0.00681x *$ $w = \frac{x}{1000} \rightarrow] t = 14.3 - 6.81w$		M1 M1 A1cso* (4) B1 (1)	1.1b 1.1b 2.2a
(c) [v	$= \frac{94.62}{20} - b' \frac{28130}{20} [= 14.308]$ $= 14.3 - 0.00681x *$ $w = \frac{x}{1000} \rightarrow t = 14.3 - 6.81w$	$\frac{0.062)^2}{(20.655)^2} [= 35.7*]$	M1 A1cso* (4) B1 (1)	1.1b 2.2a
(c) [v	$= 14.3 - 0.00681x *$ $w = \frac{x}{1000} \rightarrow] t = 14.3 - 6.81w$	$\frac{0.062)^2}{(20.655)^2} [= 35.7*]$	A1cso* (4) B1 (1)	2.2a
(c) [v	$= 14.3 - 0.00681x *$ $w = \frac{x}{1000} \rightarrow] t = 14.3 - 6.81w$	$\frac{0.062)^2}{(20.655)^2} [= 35.7*]$	(4) B1 (1)	
44		$\frac{0.062)^2}{(20.655)^2} [= 35.7*]$	B1 (1)	3.3
44		$\frac{0.062)^2}{(20.655)} [= 35.7*]$	(1)	3.3
4	$44.7(1 - (-0.959)^2) \text{ or } 444.7 - \frac{(-60.959)^2}{8.8}$	$\frac{0.062)^2}{(20.655)} [= 35.7*]$, ,	
4	$44.7(1 - (-0.959)^2) \text{ or } 444.7 - \frac{(-60.959)^2}{8.8}$	$\frac{0.062)^2}{20.655} [= 35.7*]$	R1cco*	
(d)			DICSO.	1.1b
			(1)	
(re	esidual) ² = $[1.4 - (14.3 - 0.00681(1$	$[100)]^2 = 29.2$	M1	3.4
(e)(i) [2	29.2÷ 35.7 × 100%]	awrt 82%	A1	1.1b
			(2)	
(a)(ii)	As the point representing this data co- najority of the RSS), the point is poss- nould be investigated.		B1	3.5a
	<u> </u>		(1)	
(10 marks)				
	Notes			
(a) B:	1: Correct contextual interpretation			
M	I1: Using pmcc to find S_{xt}			
	M1: Setting up linear model by attempting to find <i>b</i>			
(b) N	Note: Allow M2 for $b = r \sqrt{\frac{S_{tt}}{S_{xx}}}$			
A	I1: Setting up linear model by attem 1cso*: Correct model $t = 14.3 - 0.00$ = awrt -0.00681 dependent upon all	0681x with a = awrt 14.	3 and	
	1: Correct model			
` ′	1cso*: Either correct expression			
	I1: Using the model to evaluate the	squared residual		
(e)(i) and (ii) A1: awrt 82% B1: Evaluating the result obtained from the model to suggest that this poir be an outlier				int may

Question	Scheme	Marks	AOs		
5(a)	$[E(X) = 2\beta]$				
	$E(A) = E\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{2}[E(X) + E(X)]$				
	2 /	M1	3.1a		
	$E(B) = E\left(\frac{X_1 + 2X_2 + 3X_3}{8}\right) = \frac{1}{8}[E(X) + 2E(X) + 3E(X)]$				
	$E(C) = E\left(\frac{X_1 + 2X_2 - X_3}{8}\right) = \frac{1}{8}[E(X) + 2E(X) - E(X)]$				
	Bias for $A = E(A) - \beta = 2\beta - \beta = \beta$	M1	2.1		
	Bias for $B = E(B) - \beta = 1.5\beta - \beta = 0.5\beta$	A1 A1	1.1b 1.1b		
	Bias for $C = E(C) - \beta = 0.5\beta - \beta = -0.5\beta$	A1	1.1b		
(1.)		(5)			
(b)	$\left[\operatorname{Var}(X) = \frac{4}{3}\beta^2 \right]$				
	Better estimator would have the smallest bias and the least				
	variance. B and C have equal bias, so we select the estimator with the smallest variance				
	$Var(B) = Var\left(\frac{X_1 + 2X_2 + 3X_3}{8}\right)$	M1	2.1		
	$= \frac{1}{64} \left[\operatorname{Var}(X) + 4 \operatorname{Var}(X) + 9 \operatorname{Var}(X) \right]$				
	$Var(C) = Var\left(\frac{X_1 + 2X_2 - X_3}{8}\right)$				
	$\left(\frac{\operatorname{Var}(C) - \operatorname{Var}}{8}\right)$				
	$= \frac{1}{64} [\operatorname{Var}(X) + 4\operatorname{Var}(X) + \operatorname{Var}(X)]$				
	$Var(B) = \frac{7}{32} Var(X) [= \frac{7}{24} \beta^2]$	A1	1.1b		
	$Var(C) = \frac{3}{32} Var(X) [= \frac{1}{8} \beta^2]$	A1	1.1b		
	(Since both have same bias and) $Var(C) < Var(B)$ therefore C is the better estimator.	B1ft	2.2a		
	var(e) var(z) mererore e is me sector estimation.	(4)			
(c)	Any unbiased estimator, e.g. $\frac{X_1 + X_2 + X_3}{6}$, ,	2.50		
	Any unbiased estimator, e.g. 6	B1	3.5c		
		(1)			
	(10 marks)				
	Notes Notes M1. Using independence to calculate the $E(A)$, $E(P)$ or $E(C)$				
	M1: Using independence to calculate the $E(A)$, $E(B)$ or $E(C)$ M1: Use of bias = $E(X) - \beta$				
(a)	A1: Correct bias for A				
	A1: Correct bias for B A1: Correct bias for C [allow $+0.5\beta$]				
	M1: Realising that variances need to be compared and attempt	t at linear			
	combination of variances for B or C				
(b)	A1: Correct Var(B)				
	A1: Correct Var(C) A1ft: Correct comparison and deduction that C a better estima	tor than A	and B .		
(c)	B1: Allow any unbiased estimator, e.g. $\frac{X_1}{2}$				
•					

Question	Scheme	Marks	AOs	
6(a)	$H_0: \sigma_r^2 = \sigma_{mb}^2 \qquad H_1: \sigma_r^2 \neq \sigma_{mb}^2$	B1	2.5	
	$s_r^2 = \frac{1}{7} \left(21032 - 8 \times \left(\frac{410}{8} \right)^2 \right) = 2.7857$	M1 A1	2.1 1.1b	
	$s_{mb}^2 = \frac{1}{5} \left(14426 - 6 \times \left(\frac{294}{6} \right)^2 \right) = 4$	A1	1.1b	
	$\frac{s_{mb}^2}{s_r^2} = 1.4358$	M1	3.4	
	CV F _{5,7} = 7.46	B1	1.1b	
	(1.4358 < 7.46 so there is) insufficient evidence to suggest the variances of the wingspans are different.	A1	2.2b	
(b)	5141	(7)		
(b)	$\chi_{5,\alpha}^2 = \frac{5 \times '4'}{1.194}$ or $\chi_{5,\alpha}^2 = \frac{5 \times '4'}{48.54}$ $\chi_{5,\alpha}^2 = 16.75 \to \alpha = 0.005$ or $\chi_{5,\alpha}^2 = 0.412 \to \alpha = 0.995$	M1	3.1b	
	$\chi_{5,\alpha}^2 = 16.75 \rightarrow \alpha = 0.005$ or $\chi_{5,\alpha}^2 = 0.412 \rightarrow \alpha = 0.995$	M1	1.1b	
	<i>k</i> = 99	A1	1.1b	
		(3)		
(c)	$s_p^2 = \frac{7 \times '2.7857' + 5 \times '4'}{8 + 6 - 2} [= 3.29]$	M1	3.1b	
	$t_{12} = 2.179$	B1	1.1b	
	$\left(\frac{410}{8} - \frac{294}{6}\right) \pm 2.179 \times \sqrt{3.29} \sqrt{\frac{1}{8} + \frac{1}{6}}$	M1	3.4	
	(awrt 0.115, awrt 4.39)	A1 A1	1.1b 1.1b	
		(5)		
	(15 marks)			
	Notes			
	B1: For both hypotheses in terms of σ			
	M1: Correct method for s_r^2 or s_{mb}^2			
(a)	A1: awrt 2.79 (allow $\frac{39}{14}$)			
(a)	 A1: 4 cao M1: Using correct model for test statistic with correct ratio B1: Correct CV A1ft: Drawing a correct inference in context using their CV and the on both M marks) 	ir test statis	tic (dep	
	M1: Either correct attempt at $\chi_{5,\alpha}^2$ with $\nu = 5$			
(b)	M1: Using tables to find appropriate probability A1: 99 cao			
(c)	M1 : Correct expression for s_p^2			
	B1: Correct 95% <i>t</i> -value M1: CI in the correct form (may be implied by either A mark) A1: awrt 0.115 A1: awrt 4.39			

7(a) $ (A + R) \sim N(300, 12^2 + 10^2) $ $ (A + R) \sim N(300, 12^2 + 10^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(320, 2 \times 12^2) $ $ (A + R) \sim N(160m - 140m + 12^2 + R \times 10^2) $ $ (A + R) \sim N(160m - 140n + 140m + 12^2 + R^2 \times 10^2) $ $ (A + R) \sim N(160m - 140n + 140m + 12^2 + R^2 \times 10^2) $ $ (A + R) \sim N(160m - 140n + 140m + 12^2 + R^2 \times 10^2) $ $ (A + R) \sim N(160m - 140n + 140m + 12^2 + R^2 \times 10^2) $ $ (A + R) \sim N(160m - 140n + 140m + 12^2 + R^2 \times 10^2) $ $ (A + R) \sim N(160m - 140n + 12^2 + R^2 \times 10^2 + 12^2 + R^2 \times 10^2 + 12^2 + R^2 \times 10^2 + R^2$	Question	Scheme	Marks	AOs		
(a) $(A+R) \sim N(300, 12^2+10^2)$	7(a)					
(a) $(A_1 + A_2) \sim N(320, 2 \times 12^2)$ A1 1.1b (b) P(both are apples) $[=\frac{4}{3} \times \frac{3}{4}] = \frac{3}{5}$ M1 2.1 P(one apple and one orange) $=\frac{2}{5}$ M1 2.1 $= 0.5377$ awrt 0.538 A1 1.1b (c) $[W = \sum_{i=1}^{m} A - n \times R]$ M1 3.3 $W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ A1 1.1b $= 160m - 140n = (1100.08 + 1499.92) + 2 [=1300]$ M1 2.1 $= 2 \times 1.96 \times \sqrt{m \times 12^2 + n^2 \times 10^2} = (1499.92 - 1100.08)$ B1 1.1b $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ M1 1.1b $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1 $= \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^2 + n^2 \times 10^2 = 102$ dM1 2.1						
(b) P(both are apples) $[=\frac{4}{3} \times \frac{3}{4}] = \frac{3}{5}$ M1 2.1 P(one apple and one orange) $=\frac{2}{3}$ M1 2.1 $=\frac{1}{3} \cdot P(A_1 + A_2 > 310) + \frac{1}{5} \cdot P(A + R > 310)$ M1 2.1 $=0.5377$ awrt 0.538 A1 1.1b (3) (3) (c) $[W = \sum_{1}^{m} A - n \times R]$ M1 3.3 W $\sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ A1 1.1b $=160m - 140n = (1100.08 + 1499.92) \div 2 = 1300]$ M1 2.1 $=1300 + 140n = (1100.08 + 1499.92) \div 2 = 1300]$ M1 1.1b $=100m - 140n = (1100.08 + 1499.92) \div 2 = 1000$ M1 1.1b $=100m - 140n = (1100.08 + 1499.92) \div 2 = 1000$ M1 1.1b $=100m - 140n = (1100m - 140n + 120m + 120$		$(A_1 + A_2) \sim N(320, 2 \times 12^2)$				
(b) P(both are apples) $[=\frac{4}{3} \times \frac{3}{4}] = \frac{2}{3}$		$(A1 + A2) \sim 14(320, 2 \times 12)$	AI	1.10		
P(one apple and one orange) = $\frac{2}{3}$ $\frac{1}{3}$ 'P(A ₁ + A ₂ > 310) + $\frac{1}{2}$ 'P(A+R > 310) =0.5377 awrt 0.538 A1 1.1b (c) [W = $\sum_{i=1}^{m} A - n \times R$] $W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ M1 3.3 $W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ M1 2.1 $2 \times 1.96 \times \sqrt{m \times 12^2 + n^2 \times 10^2} = (1499.92 - 1100.08)$ B1 1.1b $\sqrt{m \times 12^2 + n^2 \times 10^2} = 102$ M1 1.1b $\sqrt{m \times 12^2 + n^2 \times 10^2} = 102$ M1 1.1b $m = \frac{1300 + 140n}{160} \rightarrow \sqrt{(\frac{1300 + 140n}{160}) \times 12^2 + n^2 \times 10^2} = 102$ dM1 2.1 $100n^2 + 126n - 9234 = 0$ A1 1.1b $m = 9 (n = -10.26 \text{ reject})$ A1 1.1b (8) Notes M1: Setting up either model for the weights of the two fruit A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)			(3)			
P(one apple and one orange) = $\frac{2}{5}$ $\frac{1}{3} \cdot P(A_1 + A_2 > 310) + \frac{1}{2} \cdot P(A + R > 310)$ =0.5377 awrt 0.538 A1 1.1b (3) (c) [$W = \sum_{i=1}^{n} A - n \times R$] $W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ $160m - 140n = (1100.08 + 1499.92) \div 2 [=1300]$ $2 \times 1.96 \times \sqrt{m \times 12^2 + n^2 \times 10^2} = (1499.92 - 1100.08)$ B1 1.1b $\sqrt{m \times 12^2 + n^2 \times 10^2} = 102$] $m = \frac{1300 + 140n}{160} \rightarrow \sqrt{(\frac{1300 + 140n}{160}) \times 12^2 + n^2 \times 10^2} = 102$ $m = 9 \cdot (n = -10.26 \text{ reject})$ $m = 16$ A1 1.1b (a) M1: Setting up either model for the weights of the two fruit A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: $n = 9 \cdot (\text{only})$	(b)	P(both are apples) $\left[=\frac{4}{5} \times \frac{3}{4}\right] = \frac{3}{5}$	M1	2.1		
Co $W = \sum_{1}^{m} A - n \times R$ $W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ $W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ $W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$ $W \sim N(160m - 140n = (1100.08 + 1499.92) \div 2 = 1300$ $W \sim N(160m - 140n = (1100.08 + 1499.92) \div 2 = 1300$ $W \sim N(160m - 140n = (1100.08 + 1499.92) \div 2 = 1300$ $W \sim N(12^2 + n^2 \times 10^2 = 102$ $W \sim N(12^2 + n^2 \times 10^2 = 102)$ $W \sim N(12^2 + n^2 \times 10^2 = 102)$ $W \sim N(160m - 140n) \rightarrow N(160m - 160m) \rightarrow $		P(one apple and one orange) = $\frac{2}{5}$	1411	2.1		
(c) $[W = \sum_{1}^{m} A - n \times R]$ $W \sim N(160m - 140n, m \times 12^{2} + n^{2} \times 10^{2})$ $160m - 140n = (1100.08 + 1499.92) \div 2 [=1300]$ $2 \times 1.96 \times \sqrt{m \times 12^{2} + n^{2} \times 10^{2}} = (1499.92 - 1100.08)$ $I = \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{(1300 + 140n)}{160} \times 12^{2} + n^{2} \times 10^{2}} = 102$ $100n^{2} + 126n - 9234 = 0$ $n = 9 (n = -10.26 \text{ reject})$ $M1 = 1.1b$ $M2 = 16$ $M3 = 1.1b$ $M4 = 1.1b$ $M6 = 16$ $M1 = 1.1b$ $M8 = 16$ $M1 = 1.1b$ $M2 = 1.1b$ $M3 = 1.1b$ $M4 = 1.1b$ $M4 = 1.1b$ $M5 = 1.1b$ $M6 = 1.1b$ $M6 = 1.1b$ $M1 = 1.1b$ $M1$		$\frac{3}{5} P(A_1 + A_2 > 310) + \frac{2}{5} P(A + R > 310)$	M1	2.1		
(c) $ [W = \sum_{1}^{m} A - n \times R] $ $W \sim N(160m - 140n, m \times 12^{2} + n^{2} \times 10^{2}) $ $160m - 140n = (1100.08 + 1499.92) \div 2 [=1300] $ $2 \times 1.96 \times \sqrt{m \times 12^{2} + n^{2} \times 10^{2}} = (1499.92 - 1100.08) $ $[\sqrt{m \times 12^{2} + n^{2} \times 10^{2}} = 102] $ $m = \frac{1300 + 140n}{160} \rightarrow \sqrt{(\frac{1300 + 140n}{160}) \times 12^{2} + n^{2} \times 10^{2}} = 102 $ $100n^{2} + 126n - 9234 = 0 $ $n = 9 (n = -10.26 \text{ reject}) $ $M1 : \text{Setting up either model for the weights of the two fruit} $ $A1 : \text{Correct distribution for 1 apple 1 orange} $ $A1 : \text{Correct distribution for 2 apples} $ $M1 : \text{Finding probability for each possible outcome} $ $M1 : \text{Setting up model for } W $ $A1 : \text{correct distribution} $ $M1 : \text{Setting up model for } W $ $A1 : \text{correct distribution} $ $M1 : \text{Setting up model for } W $ $A1 : \text{correct distribution} $ $M1 : \text{Using given interval to set up equation for mean} $ $M1 : \text{Using given interval to set up equation for variance} $ $dM1 : \text{Solving simultaneously leading to a 3TQ (dep on previous M mark)} $ $A1 : n = 9 \text{ (only)} $		=0.5377 awrt <u>0.538</u>	A1	1.1b		
$[W = \sum_{i} A - n \times R]$ $W \sim N(160m - 140n, m \times 12^{2} + n^{2} \times 10^{2})$ $160m - 140n = (1100.08 + 1499.92) \div 2 [=1300]$ $2 \times 1.96 \times \sqrt{m \times 12^{2} + n^{2} \times 10^{2}} = (1499.92 - 1100.08)$ $[\sqrt{m \times 12^{2} + n^{2} \times 10^{2}} = 102]$ $M1 = \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^{2} + n^{2} \times 10^{2}} = 102$ $m = \frac{1300 + 140n}{160} \rightarrow \sqrt{\frac{1300 + 140n}{160}} \times 12^{2} + n^{2} \times 10^{2}} = 102$ $m = 9 (n = -10.26 \text{ reject})$ $M1 = 16$ $M1 = 1.1 \text{ b}$ $M1 = 1.1 \text{ correct distribution for 1 apple 1 orange}$ $A1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 1 apple 1 orange}$ $A1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 1 apple 1 orange}$ $A1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 3 apples}$ $M1 = 1.1 \text{ correct distribution for 4 apple 1 orange}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 3 apple 1 orange}$ $M1 = 1.1 \text{ correct distribution for 2 apples}$ $M1 = 1.1 \text{ correct distribution for 3 apple 1 orange}$ $M1 = 1.1 \text{ correct distribution for 3 apple 2 orange}$ $M1 = 1.1 \text{ correct distribution for 3 apple 3 orange}$ $M1 = 1.1 \text{ correct distribution for 3 apple 3 orange}$ $M1 = 1.1 \text{ correct distribution for 4 apple 3 orange}$ $M1 = 1.1 \text{ correct distribution for 6 orange}$ $M1 = 1.1 \text{ correct distribution for 7 apple 3 orange}$ $M1 = 1.1 \text{ correct distribution for 9 orange}$			(3)			
$W \sim N(160m-140n, m \times 12^2 + n^2 \times 10^2) \qquad \qquad M1 \qquad 3.3 \\ A1 \qquad 1.1b \\ \hline 160m-140n = (1100.08+1499.92) \div 2 \ [=1300] \qquad \qquad M1 \qquad 2.1 \\ \hline 2 \times 1.96 \times \sqrt{m \times 12^2 + n^2 \times 10^2} = (1499.92-1100.08) \qquad \qquad B1 \qquad 1.1b \\ \hline [\sqrt{m \times 12^2 + n^2 \times 10^2} = 102] \qquad \qquad M1 \qquad 1.1b \\ \hline m = \frac{1300+140n}{160} \rightarrow \sqrt{(\frac{1300+140n}{160}) \times 12^2 + n^2 \times 10^2} = 102 \\ \hline m = 9 (n=-10.26 \text{ reject}) \qquad \qquad A1 \qquad 1.1b \\ \hline m = 16 \qquad \qquad A1 \qquad 1.1b \\ \hline M1: Setting up either model for the weights of the two fruit \\ \hline A1: Correct distribution for 1 apple 1 orange \\ \hline A1: Correct distribution for 2 apples \\ \hline M1: Finding probability for each possible outcome \\ \hline M1: Setting up model for W \\ \hline A1: awrt 0.538 \\ \hline M1: Setting up model for W \\ \hline A1: correct distribution M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) \\ \hline A1: n = 9 \text{ (only)}$	(c)	$[W = \sum_{n=0}^{\infty} A - n \times R]$				
		1	M1	3.3		
$2 \times 1.96 \times \sqrt{m \times 12^2 + n^2 \times 10^2} = (1499.92 - 1100.08)$ $1 \times 1.1b$ $1 \times $		$W \sim N(160m - 140n, m \times 12^2 + n^2 \times 10^2)$	A1	1.1b		
$[\sqrt{m \times 12^2 + n^2 \times 10^2} = 102]$ $m = \frac{1300 + 140n}{160} \rightarrow \sqrt{(\frac{1300 + 140n}{160}) \times 12^2 + n^2 \times 10^2} = 102$ $100n^2 + 126n - 9234 = 0$ $n = 9 (n = -10.26 \text{ reject})$ $M1 1.1b$ $m = 16$ $A1 1.1b$ $m = 10$		$160m - 140n = (1100.08 + 1499.92) \div 2 [=1300]$	M1	2.1		
$m = \frac{1300 + 140n}{160} \rightarrow \sqrt{(\frac{1300 + 140n}{160}) \times 12^2 + n^2 \times 10^2} = 102$ $100n^2 + 126n - 9234 = 0$ $n = 9 (n = -10.26 \text{ reject})$ $M1 1.1b$ $m = 16$ $A1 1.1b$ $m = 10$ $A1 1.1b$ $m = 10$ $m $		$2 \times 1.96 \times \sqrt{m \times 12^2 + n^2 \times 10^2} = (1499.92 - 1100.08)$	B1	1.1b		
$m = \frac{1300 + 140n}{160} \rightarrow \sqrt{(\frac{1300 + 140n}{160}) \times 12^2 + n^2 \times 10^2} = 102$ $100n^2 + 126n - 9234 = 0$ $n = 9 (n = -10.26 \text{ reject})$ $m = 16$ A1 1.1b $m = 16$ A2 1.1b $m = 16$ A3 1.1b $m = 16$ A1 1.1b $m = 10$ A1 1.1b A1 1.1b $m = 10$ A1 1.1b		$[\sqrt{m \times 12^2 + n^2 \times 10^2} = 102]$	M1	1.1b		
n = 9 (n = -10.26 reject)			dM1	2.1		
m = 16 Notes Notes Notes M1: Setting up either model for the weights of the two fruit A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)		$100n^2 + 126n - 9234 = 0$				
(a) M1: Setting up either model for the weights of the two fruit A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)		n = 9 ($n = -10.26$ reject)	A1	1.1b		
Notes M1: Setting up either model for the weights of the two fruit A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)		m = 16	A1	1.1b		
Notes M1: Setting up either model for the weights of the two fruit A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)			(8)			
M1: Setting up either model for the weights of the two fruit A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)		(14 marks)				
(a) A1: Correct distribution for 1 apple 1 orange A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome (b) M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)		-				
A1: Correct distribution for 2 apples M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)						
M1: Finding probability for each possible outcome M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)	(a)					
(c) M1: Fully correct method for finding the required probability A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)						
A1: awrt 0.538 M1: Setting up model for W A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)	(b)					
(c) A1: correct distribution M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)						
(c) M1: Using given interval to set up equation for mean B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)						
(c) B1: 1.96 M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)						
M1: Using given interval to set up equation for variance dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: n = 9 (only)						
dM1: Solving simultaneously leading to a 3TQ (dep on previous M mark) A1: $n = 9$ (only)	(c)					
A1: $n = 9$ (only)			nic M marl	3)		
			ous ivi illali	<i>.</i>)		
		A1: $m = 16$ (only)				