

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021 Question Paper Log Number P71284A Publications Code WST01_01_2110_MS All the material in this publication is copyright © Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number	Scheme	Marks		
1 (a)	[Sum of probs = 1 gives $p + q = 0.2$ and] so $P(B) = \underline{0.5}$	B1		
		(1)		
(b)	e.g. $P(A) = 0.3$ or $0.1 + "$ their value for $p + q"$, $P(A \cap B) = 0.2$ or "their value for	2.0		
	$p + q$ ", and $[P(A) \times P(B) =]0.3 \times "0.5" [="0.15"]$	MI		
	$0.15 \neq 0.2$ so [A and B are] not independent	A1		
		(2)		
(c)	$[P(C B) =] \frac{p}{"0.5"} = p + 0.06 (o.e.)$	M1		
	[2p = p + 0.06 so] p = 0.06	A1		
	[Use of $p + q = 0.2$ gives] $\underline{q = 0.14}$	A1		
(b)	Suitable event D drown [See Venn diagrams below]	(3) P1		
(a)	Suitable event D drawn. [See venn dragrams below]	ы (1)		
		[7]		
	Notes			
(a)	B1 for 0.5 or exact equivalent			
(b)	M1 for sight of correct probabilities for P(A) and P($A \cap B$) clearly labelled 0.3 × "0.5"	seen or		
	$P(A) \times P(B) = 0.15$	Seen or		
	Allow $0.04 + 0.06 + 0.2$ for P(A) if clearly labelled			
	$P(A \cap B)$ may be stated in part (a) $P(B)$ can ft from (a) eg $P(A) = "0.5" - 0.3 - 0.2$			
ALT	May see $P(B A) = \frac{2}{3}$ and compared with $P(B)$ or $P(A B) = 0.4$ and $P(A) = 0.3$			
	A1 For all the correct probabilities and calculations, a comparison and correct conclusion. We need			
	to see 0.15 but will accept $P(A \cap B) \neq P(A) \times P(B)$ instead of 0.15 \neq 0.2 for comp	arison		
	SC Allow M1A0 for $P(A) = 0.1 + n + q$; $P(A \cap R) = n + q$ clearly labelled and			
	$0.5 \times (0.1 + p + q)$ or $(p + q + 0.3)(0.1 + p + q)$ given.			
	$(0.5 \times (0.1 \times p \times q)) $ or $(p \times q \times 0.5)(0.1 \times p \times q)$ given.			
(c)	M1 ft their $P(B)$ from part (a). For a correct equation in p or q based on the given statement	. NB		
	equation in terms of q is $\frac{0.2-q}{"0.5"} = 0.26 - q$ (o.e.) Allow $\frac{p}{0.3 + p + q} = p + 0.06$			
	$1^{\text{st}} A1 \text{ for } (p =) 0.06$			
And only	$2^{nd} A1$ for $(q =) 0.14$ (n =) 0.06 and (q =) 0.14 - 2/2			
Ans only (d)	B1 for a suitable event D drawn that has an intersection with B but not with A. Condone if	not		
()	labelled D			

Question Number	Scheme	Marks
2 (a)	$\left[S_{xp} = \right] 2347 - \frac{93 \times 273}{12} \text{or} 2347 - \frac{25389}{12} \left[= 231.25 \right] \ (*)$	B1cso
		(1)
(b)	$\left[S_{pp} = \right] 6602.72 - \frac{273^2}{12} = [391.97]$	M1
	[r-] 231.25	M1
	$[r =] \frac{1}{\sqrt{148.25 \times "391.97"}}$	141 1
	= 0.959307 awrt 0.959	A1 (3)
(c)	$b = \frac{S_{xp}}{S_{yx}} = \frac{231.25}{148.25} [= 1.559865]$	M1
	$a = \frac{273}{12} - "1.56" \times \frac{93}{12} \text{ or } 22.75 - "1.56" \times 7.75 [=10.66]$	M1
	b = awrt 1.6 or $a = awrt 11a = 10.7 + 1.56r$	A1 A1
	p = 10.7 + 1.50x	(4)
(d)	e.g. each extra employee costs the company (on average)[\$"]156" a year in paper	B1 (1)
(e)	[New $p = 10.8 \times "10.66" + \frac{"1.559"}{2} \times \frac{93}{12}$ [=14.573]	(1) M1
	[compared with $\overline{p} = 22.75$] so percentage saving is $\frac{22.75 - 14.573}{100}$	M1
	= 35.94 awrt 36[%]	A1 (3)
	Notes	[12]
(a)	B1 for either correct expression [don't need = 231.25]	
(b)	1^{st} M1 for attempt at correct expression for S _{pp} Allow one transcription error e.g. 6620	0.72 May be
	seen in part (a)	
	If no correct expression seen allow $S_{pp} = awrt 392$ or correctly placed in formula	for <i>r</i>
	2^{nd} M1 for a correct expression for r, ft their S _{pp}	
	A1 for awrt 0.959	
(0)	2^{nd} M1 for a correct expression for a ft their value for b. May be implied by a wrt 10.7	
	1 st A1 for $b = awrt 1.6$ or $a = awrt 11$	
	2^{nd} A1 for correct equation in p and x with $b = awrt 1.56$ and $a = awrt 10.7$	
(a)	 B1 for a suitable contextual comment that mentions their value of b Allow multiples eg every extra 100 employees costs the company "\$15600". Condor sign or use of £. Do not allow "\$1.56" for 1 person unless indicates in 100's 	ne missing \$
(e)	1^{st} M1 for a correct expression for average value of p using new model [ft their a and b]	
	2^{nd} M1 for correct percentage saving calculation using 22.75 (e.g. $\frac{14.573}{22.75}$ [×100]) Al	llow use of
	"10.7"+1.56"× $\frac{93}{12}$ [\approx 22.79] for 22.75 May be implied by correct answer.	
	A1 for awrt 36 SC use of 93 throughout part (e) rather than 7.75 leading to awrt 48 or 0.48 (they will p	eed to use the
	regression line from part(c) to calculate the original value) gains M0M1A0 SC use of 93 in part(c) Answer of 36% gains M1M1A1, 64% or 0.64 gains M1M1A0.	eeu to use me

Question Number	Scheme	Marks
3. (a)	[Median =] <u>53</u>	B1
(b)	$Q_1 = 45$ $Q_3 = 61$ [IQR =] $61 - 45 = 16$ (*)	(1) M1 A1cso
(c)	$Q_1 - 1.5 \times (IQR) = 45 - 1.5 \times 16 [= 21]$ or $Q_3 + 1.5 \times (IQR) = 61 + 1.5 \times 16 [= 85]$ Outliers are < 21 or > 85 So there are three outliers at 13, 87 and 88	(2) M1 A1ft A1
(d)	* -	(3) M1 A1ft A1 A1
(e)	Age (males) e.g. the females are generally older than the men as median is higher $(67 > 53)$	(4) B1
(f)(i) (ii)	No change to box plot means one in each section so granddaughter [34~56] Eldest daughter in range [67~72] or Anja's age [72~93] Since Anja 23 years older than eldest daughter Anja in range [90~93]	(1) B1 M1 A1
	Notes	[14]
(a) (b)	B1for 53M1for an attempt at both and at least one correct. No need to be labelled.	[-]
	A1cso for both correct quartiles seen and $61 - 45$ leading to 16	
(c)	M1 for attempting at least one of the limits. Can ft their quartiles. May be implied by 85 1 st A1ft for both outlier limits correct or correct ft using their quartiles 2 nd A1 for identifying the three outliers at 13, 87, 88 (dep on seeing both correct limits)	or 21
(d)	M1 for drawing a box with only two whiskers one at each end 1 st A1ft for Q_1, Q_2 and Q_3 as a correctly drawn box (ft their values for Q_1, Q_2 and Q_3 2 nd A1 for upper whisker ending at 76 (or 85) and lower whisker ending at 27 (or 21) Must be correctly paired. 3 rd A1 for the 3 outliers correctly shown (accuracy - half a small square throughout) SC fully correct but with both whiskers correct on each side. M0A1A0A1) NB
(e)	 B1 for a correct comment, referring to ages, with reference to a correctly named statist include the figures compared. eg Females older than men and comparison of median, upper quartile or lower quartile Q1, Q2 and Q3 with their figures which must agree with the statement. eg Males ages more spread out than female and comparison of ranges with males = 7 females = 73 eg Females older than males since Males are symmetrical [Q3 – Q2 : Q2 – Q1] 8 : 8 are negative skew 5 : 11 NB use of mean/ IQR/ minimum/ maximum is B0. Ignore incorrect comments. 	tic. Must le, allow 5 and Female
(f)(i)	B1 for deducing granddaughter is at or below lower quartile but not below 34 Allow any reasonable adjustment for her mother's age, $\{34 \text{ to } x\}$ where $35 \square x \square 56$	
(ii)	 M1 Suitable range for eldest daughter or Anja above upper quartile. Ignore any incorrec May be implied by a correct range. A1 for a range of [90~93] for Anja's age 	t upper limit.

Question Number	Scheme	Marks
4. (a)	$\frac{4}{5}$ Red $\frac{7}{8}$ Red $\frac{7}{8}$ Red	B1 B1
	$\frac{1}{5}$ Yellow $\frac{1}{8}$ Yellow $\frac{1}{8}$ Red $\frac{1}{3}$ Yellow $\frac{4}{5}$ Red $\frac{1}{8}$ Red $\frac{1}{8}$ Red $\frac{1}{8}$ Red $\frac{1}{4}$ Yellow $$	B1
(b)	[Cases <i>RYY</i> or <i>YRY</i> or <i>YYR</i>] Prob = $\frac{2}{3} \times \frac{1}{5} \times \frac{1}{8} + \frac{1}{3} \times \frac{4}{5} \times \frac{1}{8} + \frac{1}{3} \times \frac{1}{5} \times \frac{6}{8}$	M1 A1ft
	$\left[=\frac{1}{120}(2+4+6) \text{ or } (0.0166+0.033+0.05)\right] = \frac{12}{120} \text{ or } \frac{1}{\underline{10}} $ (*)	A1*cso
(c)	$[P(RYY RYY \text{ or } YRY \text{ or } YYR) =] \frac{"\frac{2}{3} \times \frac{1}{5} \times \frac{1}{8}"}{\frac{1}{10}}$	(3) M1
	$=\frac{1}{\underline{6}}$	A1
(d)	x 0 1 2 3 P(X=x) $\frac{64}{120}$ or $\frac{8}{15}$ $\frac{42}{120}$ or $\frac{7}{20}$ $\begin{bmatrix} 1\\10 \end{bmatrix}$ $\frac{2}{120}$ or $\frac{1}{60}$	(2) B1 M1 A1
(e)	$\left[E(X) = \right] \frac{1}{120} \left(0 + "42" + "2 \times 12" + "3 \times 2" \right)$	(3) M1
	$=\frac{72}{120}$ or <u>0.6</u>	A1 (2)
	Notes	
(a)	 1st B1 completing the structure of branches: 2, 4 then 7 or 8 and suitable labels e.g. Y of 2nd B1 correct probabilities for at least bag A and bag B. Allow exact decimals 3rd B1 for a fully correct tree diagram. Condone missing 0 as probability. Allow exact of a structure diagram. 	r <i>R'</i> lecimals
(b)	 1st M1 for at least one correct product of 3 probabilities (ft their tree diagram) 1st A1ft for all 3 products of 3 probabilities added (no extras) (ft their tree diag.) 2nd A1*cso for fully correct solution with no incorrect statements seen 	
(c)	M1 for a ratio of probabilities with denominator of 0.1 and numerator $\frac{1}{60}$ or the pro-	oduct
	of 3 probabilities seen from their tree diagram representing P(<i>RYY</i>) provided num A1 for $\frac{1}{6}$ or exact equivalent	n < 0.1
(d)	B1 for a correct sample space i.e. $\{0, 1, 2, 3\}$ Allow extras if they have a probability of M1 for at least 1 correct value of x and associated probability (excluding $x = 2$) [ft their A1 for a fully correct probability distribution	of 0. r tree]
(e)	M1 for attempt at a correct expression (at least 2 correct ft part(d) non-zero products) A1 for 0.6 or any exact equivalent	

Question Number			Scheme			Mark	S
5. (a)	[By symmetry	$E(Y)] = \underline{0}$				B1	
(b)	$q+r+u=\frac{19}{20}$) -				M1	(1)
	30	2(a+r)+u=1	[and attempt to	solve e $a + r$	= 1	M1	
		2(q + r) + u = 1	Land attempt to	solve e.g. q + r	$u = \frac{8}{30} = \frac{4}{\underline{15}} (*)$	A1*cso	
(c)	$E(Y^{2}) = (-9)^{2} \times q + (-5)^{2} \times r + 5^{2} \times r + 9^{2}q \text{ or } 162q + 50r$			M1 dM1	(3)		
	v ai(1) - 37 - 37	L(I) = 0	→ 37 – 102 <i>q</i> ·	- 55			
	Solving with <i>q</i>	$r + r = \frac{11}{30}$ oe e	.g. $(162 - 50)q$	$=37-\frac{37}{3}$ or		MI	
					$q = \frac{1}{\underline{6}}$ and $r = \frac{1}{\underline{5}}$	A1	
							(4)
(d)	$Y = 0 \Longrightarrow D =$	$12, D = \sqrt{12^2 + 12^2}$	Y^2 ; $Y = \pm 5 \Longrightarrow$	D = 13 or $Y =$	$\pm 49 \Rightarrow D = 15$	B1, M1;A	1
	d	12	13	15	-	M1 A 1 ft A	16
	$\mathbf{P}(D=d)$	$\frac{4}{15}$	$\frac{6}{15}$ or $\frac{2}{5}$	$\frac{5}{15}$ or $\frac{1}{3}$.110
	L	I			1		(6)
				Notes		[14]	
(a)	B1 for 0						
(b)	1 st M1 for a correct equation in q , r and u using F(0) 2 nd M1 for a second equation clearly based on sum of probs = 1 and an attempt to solve these 2 equations						
	A1* cso correc	t value for <i>u</i> for	and with no incor	rect working			
(c)	1 st M1 for an a need to	attempt at $E(Y^2)$, o be in brackets	with at least 3 con	rrect products se	en. The negative numb	oers do not	
	2^{nd} dM1 for attempt at correct equation in q and r using Var(Y) [ft their E(Y) and E(Y ²)] Condone missing subtraction of 0^2 if 0 in part(a)						
	3 rd M1 using equa	q + r = 11/30 (av tion in one varial	wrt 0.37) to attem ble. May be impl	npt to solve two lied by correct an	linear equations in q and a swers.	nd <i>r</i> leading	g to
	A1 for q	$=\frac{1}{6}$ and $r=\frac{1}{5}$	or exact equivale	ents			
(d)	B1 for D = 1 st M1 for use 1 st A1 for D = 2 nd M1 for a c 13) wh 2 nd A1ft for tr two	= 12 e of Pythagoras to = 13 <u>and</u> 15 correct value of <i>L</i> nich add to the ap wo correct values o occurrences (fo	b work out $D = 12$ and an associate propriate probab s of D and associ r 15 and 13) which	3 <u>or</u> 15 ed probability. A ility. ated probs ft the ch add to the app	llow two occurrences ir +ve q and r if $q + r$ propriate probability.	(for 15 and $= \frac{11}{30}$ Allo	1 ow
	3^{rd} A1ft for a	fully correct pro	bability distribut	ion ft their +ve	<i>q</i> and <i>r</i> if $q + r = \frac{11}{30}$		

Question Number	Scheme	Marks
6. (a)	$H \sim N(25.1, 5.5^2)$	
	$P(H > 30.8) = P\left(Z > \frac{30.8 - 25.1}{5.5}\right) \text{ or } P(Z > 1.03636)$	M1
	= 1 - 0.8508 = 0.1492 or better (calc: 0.1500)	M1 A1cso (3)
(b)	$[P(H < y) = 0.05 \text{ implies}] \frac{y - 25.1}{5.5} = -1.6449$	M1B1
	y = 16.053 so range is awrt <u>16.1</u> ~ 30.8	A1 (3)
(c)(i)	P(H < d) = 0.05 + 0.2 + 0.3 [= 0.55]	M1
	$\frac{u-23.1}{5.5} = 0.13 \text{(Calc } 0.12566\text{)}$	M1
	$d = 0.13 \times 5.5 + 25.1 = 25.815$ (25.791 calc)	Alcso (3)
(ii)	P(H < m) = 0.05 + 0.2 [= 0.25]	M1 (3)
	$\frac{m-25.1}{5.5} = -0.67 (\text{Calc } 0.674489)$	M1M1
	m = awrt <u>21.4</u>	A1 (4)
(d)	Height = $2 \times "m" + 3 \times 25.8 + 3 \times 30.8$ [+8]	(4) M1
	= 220.6 awrt <u>221</u> (cm)	A1 (2)
		[15]
	Notes	
(a)	1 st M1 for standardising 30.8 with 25.1 and 5.5 (allow \pm) Allow use of $z = 1.04$	
	2^{10} M1 for $1 - p$ (where $0.84 \le p \le 0.86$)	
(h)	A1cso for an answer of 0.1492 of better (calc: 0.1500) with evidence of both M s s M_1 for standardising their letter y with 25.1 and 5.5 and setting equal to z value $1 \le z $	< ?
(0)	B1 for use of $z = \pm 1.6449$ or better (calc 1.6448536) with the correct standardisatio	n
	A1 for awrt 16.1 (ISW)(calc 16.053305) or range [16.1, 30.8](Allow 30.8 – 16.1 = 16	4.7[5])
Ans only	[awrt 16.05 scores 3/3 16.1 scores M1B0A1 unless 1.6449 or better is seen]	,[0])
(c)(i)	1 st M1 for a correct method to calculate $P(H < d)$ implied by $z = awrt 0.13$ Allow 0.05 + awrt 0.200 + awrt 0.300[=0.5505]	
	2^{nd} M1 for a correct standardisation = z where 0.125 " $ z $ " 0.13	
	A1cso both method marks awarded, no errors seen and awrt 25.82 or awrt 25.79	
	or $d = awrt \ 0.13 \times 5.5 + 25.1 = awrt \ 25.8$	
ALT	Verification 2 nd M1 allow $\frac{25.8 - 25.1}{5.5} = 0.127$ or 0.13	
	3.3 A1 for 0 55 and 0 5517 (calc 0 5506 or better) seen	
(ii)	1^{st} M1 correct method for $P(H \le m)$ Allow 0.05 + awrt 0.200 implied by $ z = [0.67 - 0.5]$	68]
	2^{nd} M1 for standardising <i>m</i> with 25.1 and 5.5 and setting equal to <i>z</i> value (0.65 $\Box z \Box 0$).69)
	3^{rd} M1 for standardising <i>m</i> with 25.1 and 5.5 and setting equal to awrt -0.67 oe	
	A1 for $m = awrt 21.4$ (use of $z = 0.67$ gives 21.415 and $z = 0.68$ gives 21.36) No. need for 3^{rd} M1 to be awarded	
	Answer only 21.4 gets M1M1M0A1. 21.39 gets 4/4	
(d)	M1 for $2 \times "m" + 3 \times 25.8 + 3 \times 30.8 [+n]$ where <i>n</i> is an integer \Box 0 Allow <i>m</i> or ft the	eir m
	A1 for awrt 221 (cm)	

Question Number	Scheme	Marks
ALT 1 (c)(i)	e.g. $P(H > 25.8 "16.1" < H < 30.8)$ or $\frac{P(25.8 < H < 30.8)}{1 - (0.15 + 0.05)}$	M1
	$= \frac{0.8508 - 0.5517}{0.8} \text{ (tables) or } \frac{0.299345}{0.8} \text{ (calc) } \approx \frac{3}{8}$	M1 A1cso
		(3)
	Notes	
(c)(i)	1 st M1 for a correct conditional probability statement ft their answer to (b) i.e. their	V
	2^{nd} M1 for a ratio of probs of the form $\frac{q}{0.8}$ where $q = 0.3$ to 1sf	
	A1 for probability of approx $\frac{3}{8}$	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom