

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE AS Mathematics (8MA0) Paper 01 Core Mathematics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P69201A* Publications Code 8MA0_01_2206_MS* All the material in this publication is copyright © Pearson Education Ltd 2022

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 80.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{will} be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Questio	Scheme	Marks	AOs
1	$x^n \rightarrow x^{n+1}$	M1	1.1b
	$\int \left(8x^3 - \frac{3}{2\sqrt{x}} + 5 \right) dx = \frac{8x^4}{4} \dots + 5x$	A1	1.1b
	$= \dots - 2 \times \frac{3}{2} x^{\frac{1}{2}} + \dots$	A1	1.1b
	$=2x^4 - 3x^{\frac{1}{2}} + 5x + c$	A1	1.1b
		(4)	
	N-4	(4	marks)
	Notes	11	
	For raising any correct power of x by 1 including $5 \rightarrow 5x$ (not for $+c$) Al $x^3 \rightarrow x^{3+1}$	so allow	eg
	For 2 correct non-fractional power terms (allow unsimplified coefficients) on separate lines. The indices must be processed. The $+ c$ does not count	as a corre	ect term
]	here. Condone the 1 appearing as a power or denominator such as $\frac{5x^1}{1}$ for	r this mar	k.
	For the correct fractional power term (allow unsimplified) Allow eg $+-2$	$\times 1.5\sqrt{x^1}$	
	Also allow fractions within fractions for this mark such as $\frac{\frac{1}{2}}{\frac{1}{2}}x^{\frac{1}{2}}$		
	All correct and simplified and on one line including + c. Allow $-3\sqrt{x}$ or	$-\sqrt{9x}$ fo	$r -3x^{\frac{1}{2}}$.
	Do not accept $+-3x^{\frac{1}{2}}$ for this mark.		
	Award once a correct expression is seen and isw but if there is any addition to the addition of the correct expression has been seen on its own, withhold the		
	Eg. $\int 2x^4 - 3x^{\frac{1}{2}} + 5x + c dx$ or $2x^4 - 3x^{\frac{1}{2}} + 5x + c = 0$ with no correct expreasing earlier are both A0.	ression se	en

	n Scheme	Marks	AOs
2 (a)	$f(-3) = 2(-3)^3 + 5(-3)^2 + 2(-3) + 15$	M1	1 11
	=-54+45-6+15	M1	1.1b
	$f(-3) = 0 \Longrightarrow (x+3)$ is a factor	A1	2.4
		(2)	
(b)	At least 2 of: a = 2, b = -1, c = 5	M1	1.1b
	All of: a = 2, b = -1, c = 5	A1	1.1b
		(2)	
(c)	$b^2 - 4ac = (-1)^2 - 4(2)(5)$	M1	2.1
	$b^2 - 4ac = -39$ which is <0 so the quadratic has no real roots so $f(x) = 0$ has only 1 real root	A1	2.4
		(2)	
(d)	(x =) 2	B1	2.2a
		(1)	
	Notes	(7	marks)
M1:	Attempts f(-3). Attempted division by $(x+3)$ or f(3) is M0 Look for evidence of embedded values or two correct terms of f $(-3) = -54 + 45 - 6 + 15 =$		
A1:	Achieves and states $f(-3) = 0$, and makes a suitable conclusion. Sight of f x = -3 is also acceptable. It must follow M1. Accept, for example, $f(-3) = 0 \Rightarrow (x+3)$ is a factor This may be seen in a preamble before finding $f(-3) = 0$ but in these cases minimal statement ie QED, "proved", tick etc.		

$$\frac{2x^{2} - x + 5}{x + 3 \sqrt{2x^{3} + 5x^{2} + 2x + 15}}$$

$$2x^{3} + 6x^{2} - x^{2} + 2x - x^{2} - 3x \quad \text{scores M1A1}$$

$$5x + 15 - 5x + 15 - 0$$

(c)

M1: Either:

• considers the discriminant using their *a*, *b* and *c* (does not need to be evaluated) $(b^2 - 4ac =) (-1)^2 - 4(2)(5)$ (the $(-1)^2$ may appear as 1^2 and condone missing

brackets for this mark for -1^2). Discriminant = -39 is sufficient for M1

- attempts to complete the square so score for $2\left(x \pm \frac{1}{4}\right)^2 + \dots$
- attempts to find the roots of the quadratic using the formula. The values embedded in the formula score this mark.

 $\frac{1 \pm \sqrt{(-1)^2 - 4 \times 2 \times 5}}{2 \times 2}$ (the (-1)² may appear as 1² and condone missing brackets for this mark for -1²)

• Sketches a graph of the quadratic. It must be a U shaped quadratic which does not cross the *x*-axis.

A1: Provides a correct explanation from correct working. They must

- Have a correct calculation
- Explanation that the quadratic has no (real) roots
- Minimal conclusion stating that f(x) = 0 has only one root

eg $b^2 - 4ac = -39 < 0$ so only one root is M1A0 (needs to explain the quadratic has no real roots)

eg $2\left(x-\frac{1}{4}\right)^2 + \frac{39}{8} > 0$ so no real roots (for the quadratic) so (f(x) has) only one (real) root is M1A1

The value of the discriminant, completed square form $2\left(x-\frac{1}{4}\right)^2 + \frac{39}{8}$ or roots of the

quadratic $\left(=\frac{1\pm\sqrt{39}i}{4}\right)$ must be correct.

If they sketch the quadratic graph it must be a U shaped quadratic which crosses the *y*-axis at 5 and has a minimum in the 1st quadrant. They must explain that the graph does not cross the *x*-axis so no real roots for the quadratic so only one root for f(x) = 0.

(d)

B1: 2 condone (2, 0)

Questio	n Scheme	Marks	AOs
3 (a)	$\overrightarrow{QR} = \overrightarrow{PR} - \overrightarrow{PQ} = 13\mathbf{i} - 15\mathbf{j} - (3\mathbf{i} + 5\mathbf{j})$	M1	1.1a
	=10i - 20j	A1	1.1b
		(2)	
(b)	$\left \overline{QR} \right = \sqrt{"10"^2 + "(-20)"^2}$	M1	2.5
	$=10\sqrt{5}$	A1ft	1.1b
		(2)	
(c)	$\overrightarrow{PS} = \overrightarrow{PQ} + \frac{3}{5}\overrightarrow{QR} = 3\mathbf{i} + 5\mathbf{j} + \frac{3}{5}("10\mathbf{i} - 20\mathbf{j''}) = \dots$		
	or	M1	3.1a
	$\overline{PS} = \overline{PR} + \frac{2}{5}\overline{RQ} = 13\mathbf{i} - 15\mathbf{j} + \frac{2}{5}("-10\mathbf{i} + 20\mathbf{j}") = \dots$ $= 9\mathbf{i} - 7\mathbf{j}$		
	$=9\mathbf{i}-7\mathbf{j}$	A1	1.1b
		(2)	
	Notes	(6	marks
A1: (b) M1:	vectors. If no method shown it may be implied by one correct component eg $10\mathbf{i} - 10\mathbf{j}$ on its own can score M1. Correct answer. Allow $10\mathbf{i} - 20\mathbf{j}$ and $\begin{pmatrix} 10\\-20 \end{pmatrix}$ but not $\begin{pmatrix} 10\mathbf{i}\\-20\mathbf{j} \end{pmatrix}$ Correct use of Pythagoras. Attempts to "square and add" before square r embedded values are sufficient. Follow through on their \overline{QR}		e
A1ft: (c)	$10\sqrt{5}$ following (a) of the form $\pm 10\mathbf{i} \pm 20\mathbf{j}$		
M1:	Full attempt at finding a \overrightarrow{PS} . They must be attempting $\overrightarrow{PQ} \pm \frac{3}{5} \overrightarrow{QR}$ or		
	$\overrightarrow{PS} = \overrightarrow{PR} \pm \frac{2}{5} \overrightarrow{RQ}$ but condone arithmetical slips after that.		
	Cannot be scored for just stating eg $\overrightarrow{PQ} \pm \frac{3}{5}\overrightarrow{QR}$		
	Follow through on their \overrightarrow{QR} . Terms do not need to be collected for this method shown it may be implied by one correct component following the \overrightarrow{QR}		

A1: Correct vector as shown. Allow 9i - 7j and $\begin{pmatrix} 9\\ -7 \end{pmatrix}$. Only withhold the mark for $\begin{pmatrix} 9i\\ -7j \end{pmatrix}$ if the mark has not already been withheld in (a) for $\begin{pmatrix} 10i\\ -20j \end{pmatrix}$ Alt (c) (Expressing \overline{PS} in terms of the given vectors) They must be attempting $\frac{2}{5}\overline{PQ} + \frac{3}{5}\overline{PR}$ M1: $(\overline{PS} = \overline{PQ} + \frac{3}{5}\overline{QR} = \overline{PQ} + \frac{3}{5}(\overline{PR} - \overline{PQ}))$ $\Rightarrow \frac{2}{5}\overline{PQ} + \frac{3}{5}\overline{PR} = \frac{2}{5}(3i + 5j) + \frac{3}{5}(13i - 15j) = ...$ A1: Correct vector as shown. Allow 9i - 7j and $\begin{pmatrix} 9\\ -7 \end{pmatrix}$. Only withhold the mark for $\begin{pmatrix} 9i\\ -7j \end{pmatrix}$ if the mark has not already been withheld in (a) for $\begin{pmatrix} 10i\\ -20j \end{pmatrix}$

Questio	n Scheme	Marks	AOs
4(a)(i)	$(3x+10)^2 = (x+2)^2 + (7x)^2 - 2(x+2)(7x)\cos 60^\circ$ oe	M1	3.1a
	Uses $\cos 60^\circ = \frac{1}{2}$, expands the brackets and proceeds to a 3 term quadratic equation	dM1	1.1b
	$17x^2 - 35x - 48 = 0 *$	A1*	2.1
(i		(3)	
,	x = 3	B1 (1)	3.2a
(b)	$\frac{5}{\sin ACB} = \frac{19}{\sin 60^{\circ}} \Rightarrow \sin ACB = \dots \left(\frac{5\sqrt{3}}{38}\right)$ or e.g. $5^{2} = 21^{2} + 19^{2} - 2 \times 19 \times 21\cos ACB \Rightarrow \cos ACB = \dots \left(\frac{37}{38}\right)$	(1) M1	1.1b
	$\theta = $ awrt 13.2	A1	1.1b
		(2)	
	Notes	(6	marks)
M1: dM1: A1*:	Recognises the need to apply the cosine rule and attempts to use it with the correct positions and the formula applied correctly. Condone invisible brass on $3x+10$ as $3x-10$. Alternatively, uses trigonometry to find <i>AX</i> and then equates two express length <i>BX</i> . You may see variations of this if they use Pythagoras or trigor <i>BX</i> and then apply Pythagoras to the triangle <i>BXC</i> . See the diagram below The angles and lengths must be in the correct positions. Cos 60 may be $\frac{1}{2}$ Uses $\cos 60^\circ = \frac{1}{2}$, expands the brackets and proceeds to a 3TQ. You may $\cos 60^\circ = \frac{1}{2}$ in earlier work, but they must proceed to a 3TQ as well to so is dependent on the first method mark. Obtains the correct quadratic equation with the = 0 with no errors seen in of their solution. Condone the recovery of invisible brackets as long as the clear. You do not need to explicitly see $\cos 60$ to score full marks.	ions for the nometry to w to help from the see the us ore this m	l slips ne o find you. start se of ark. It body
(a)(ii) B1:	$(x+2) \operatorname{cm} \qquad (3x+10) \operatorname{cm} $	•	

(b)

- M1: Using their value for *x* this mark is for either:
 - applying the sine rule correctly (or considers 2 right angled triangles) and proceeding to obtain a value for sin *ACB* or
 - applying the cosine rule correctly and proceeding to obtain a value for cos *ACB*.

Condone slips calculating the lengths AB, BC and AC. At least one of them should be found correctly for their value for x

(Also allow if the sine rule or cosine rule is applied correctly to find a value for $\sin ABC$

$$\left(=\frac{21\sqrt{3}}{38}\right) \text{ or } \cos ACB \left(=-\frac{11}{38}\right))$$

A1: awrt 13.2 (answers with little working eg just lengths on the diagram can score M1A1)

	n Scheme	Marks	AOs
5(a)	$p = 10^{0.5} (\text{or } \log_{10} p = 0.5) \text{ or } q = 10^{0.03} (\text{or } \log_{10} q = 0.03)$	M1	1.1b
	$p = awrt \ 3.162$ or $q = awrt \ 1.072$	A1	1.1b
	$p = 10^{0.5} (\text{or } \log_{10} p = 0.5) \text{ and } q = 10^{0.03} (\text{or } \log_{10} q = 0.03)$	dM1	3.1a
	$A = 3.162 \times 1.072^{t}$	A1	3.3
		(4)	
(b)(i)	The initial mass (in kg) of algae (in the pond).	B1	3.4
(b)(ii)	The ratio of algae from one week to the next.	B1	3.4
		(2)	
(c)(i)	5.5 kg	B1	2.2a
(c)(ii)	$4 = "3.162" \times "1.072"^{t}$ or $\log_{10} 4 = 0.03 t + 0.5$	M1	3.4
	awrt 3.4 (weeks)	A1	1.1b
		(3)	
(d)	The model predicts unlimited growth.The weather may affect the rate of growth	B1	3.5b
		(1)	
		(10	marks
	Notes		
M1:	A correct equation in <i>p</i> or <i>q</i> . May be implied by a correct value for <i>p</i> or Also score for rearranging the equation to the form $A = 10^{0.5} + 10^{0.03t}$	q.	
A1: dM1: A1:	A correct equation in <i>p</i> or <i>q</i> . May be implied by a correct value for <i>p</i> or Also score for rearranging the equation to the form $A = 10^{0.5}10^{0.03t}$ For <i>p</i> = awrt 3.162 or <i>q</i> = awrt 1.072. May be embedded within the equa Correct equations in <i>p</i> and <i>q</i> . Also score for rearranging the equation to $A = 10^{0.5} \times 10^{0.03t}$ Complete equation with <i>p</i> = awrt 3.162 and <i>q</i> = awrt 1.072. Must be see If <i>p</i> and <i>q</i> are just stated but the equation is not written with the values withhold this mark. Withhold the final mark if the correct values for <i>p</i> and <i>q</i> result from inco- such as $A = 10^{0.5} + 10^{0.03t} \Rightarrow A = 3.162 \times 1.072^t$. If <i>p</i> and <i>q</i> are stated the wrong way round, take the stated equation as the and isw.	tion. the form en in (a) embedded prrect work	ing

(ii) B1: Must reference the rate of change/multiplier and the time frame eg per week/every week/each week. **Examples of acceptable answers:** *q* is the rate at which the mass of algae increases for every week The amount of algae increases by 7.2% each week (condone amount for mass in ii) The proportional increase in mass of the algae each week Examples of answers we would not accept: q is how much algae will increase when t increases by 1 The amount that grows per unit of time The rate at which the mass of algae in the small pond increases after t number of weeks The rate in which the algae mass increases (c) B1: cao (including units) M1: Setting up a correct equation to find t using the given equation or their part (a) Substitution of A = 4 into their equation for A or the given equation is sufficient for this mark. A1: awrt 3.4 (weeks). Accept any acceptable method (including trial and improvement) Condone lack of units. isw if they subsequently convert to weeks and days. Allow awrt 3.5 (weeks) following p = awrt 3.16 and q = awrt 1.07.

An answer of only awrt 3.4 is M1A1, but an answer of 4 (weeks) with no working is M0A0

(d)

B1: Any reason why the rate of change, growth or the mass of algae might change or why the model in not realistic.
Be generous with the awarding of this mark as long as the answer has engaged with the context of the problem or the model
Examples of acceptable answers:
Seasonal changes (which would affect the growth rate)
Overcrowding (as it is a small pond)
Algae may stop growing (the model predicts unlimited growth)
Algae may die / be removed / eaten (so the rate of growth may not continue at the same rate)
Examples of answers we would not accept:
There could be other factors that affect the amount of algae (too vague)
The mass of algae might change

Question	Scheme	Marks	AOs	
6(a)	3^8 or 6561 as the constant term	B1	1.1b	
	$\left(3 - \frac{2x}{9}\right)^8 = \dots + {}^8C_1(3)^7 \left(-\frac{2x}{9}\right) + {}^8C_2(3)^6 \left(-\frac{2x}{9}\right)^2 + {}^8C_3(3)^5 \left(-\frac{2x}{9}\right)^3 + \dots$ $= \dots + 8 \times (3)^7 \left(-\frac{2x}{9}\right) + 28 \times (3)^6 \left(-\frac{2x}{9}\right)^2 + 56(3)^5 \left(-\frac{2x}{9}\right)^3$	M1 A1	1.1b 1.1b	
	$= 6561 - 3888x + 1008x^2 - \frac{448}{3}x^3 + \dots$	A1	1.1b	
		(4)		
(b)	Coefficient of x^2 is $\frac{1}{2} \times "1008" - \frac{1}{2} \times " - \frac{448}{3}"$	M1	3.1a	
	$=\frac{1736}{3}$ (or 578 $\frac{2}{3}$)	A1	1.1b	
		(2)		
	(6 marks			
	Notes			

```
(a)
```

- B1: Sight of 3^8 or 6561 as the constant term.
- M1: An attempt at the binomial expansion. This can be awarded for the correct structure of the 2nd, 3rd or 4th term. The correct binomial coefficient must be associated with the correct power of 3 and the correct power of $(\pm)\frac{2x}{9}$. Condone invisible brackets

eg
$${}^{8}C_{2}(3)^{6} - \frac{2x^{2}}{9}$$
 for this mark.

A1: For a correct simplified or unsimplified **second** or **fourth term** (with binomial coefficients evaluated).

$$+8 \times (3)^7 \left(-\frac{2x}{9}\right)$$
 or $+56 (3)^5 \left(-\frac{2x}{9}\right)^3$

A1: $6561-3888x+1008x^2 - \frac{448}{3}x^3$ Ignore any extra terms and allow the terms to be listed. Allow the exact equivalent to $-\frac{448}{3}$ eg -149.3 but not -149.3. Condone x^1 and eg +-3888x. Do not isw if they multiply all the terms by eg 3 Alt(a)

B1: Sight of $3^8(1+...)$ or 6561 as the constant term

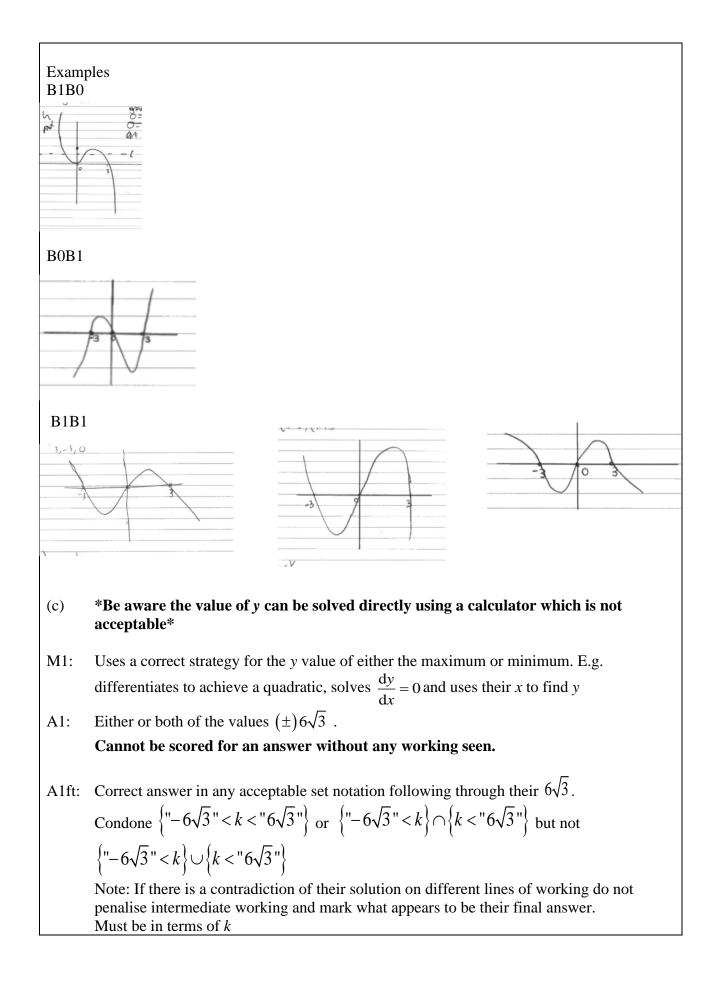
M1: An attempt at the binomial expansion $\left(1-\frac{2}{27}x\right)^8$. This can be awarded for the correct structure of the 2nd, 3rd or 4th term. The correct binomial coefficient must be associated with the correct power of $(\pm)\frac{2x}{27}$. Condone invisible brackets for this mark.

Score for any of:

$$8 \times -\frac{2}{27}x, \quad \frac{8 \times 7}{2} \times \left(-\frac{2}{27}x\right)^2, \quad \frac{8 \times 7 \times 6}{6} \times \left(-\frac{2}{27}x\right)^3 \text{ which may be implied by any of} \\ -\frac{16}{27}x, \quad +\frac{112}{729}x^2, \quad -\frac{448}{19683}x^3$$

- A1: For a correct simplified or unsimplified **second** or **fourth** term including being multiplied by 3⁸
- A1: $6561-3888x+1008x^2 \frac{448}{3}x^3$ Ignore any extra terms and allow the terms to be listed. Allow the exact equivalent to $-\frac{448}{3}$ eg -149.3 but not -149.3. Condone x^1 and eg +-3888x

(b)


M1: Adopts a correct strategy for the required coefficient. This requires an attempt to calculate $\pm \frac{1}{2}$ their coefficient of x^2 from part (a) $\pm \frac{1}{2}$ their coefficient of x^3 from part (a).

There must be an attempt to bring these terms together to a single value. ie they cannot just circle the relevant terms in the expansion for this mark. The strategy may be implied by their answer.

Condone any appearance of x^2 or x^3 appearing in their intermediate working.

A1:
$$\frac{1736}{3}$$
 or $578\frac{2}{3}$ Do not accept 578.6 or $\frac{1736}{3}x^2$

Questio	n Scheme	Marks	AOs			
7(a)	$9x - x^3 = x\left(9 - x^2\right)$	M1	1.1b			
	$9x - x^3 = x(3 - x)(3 + x)$ oe	A1	1.1b			
		(2)				
(b)	A cubic with correct orientation	B1	1.1b			
	$\begin{array}{c c} -3 & 0 \\ \hline & & \\ \end{array}$ Passes though origin, (3, 0) and (-3, 0)	B1	1.1b			
		(2)				
(c)	$y = 9x - x^3 \Rightarrow \frac{dy}{dx} = 9 - 3x^2 = 0 \Rightarrow x = (\pm)\sqrt{3} \Rightarrow y = \dots$	M1	3.1a			
	$y = (\pm) 6\sqrt{3}$	A1	1.1b			
	$\left\{ k \in \Box : -6\sqrt{3} < k < 6\sqrt{3} \right\} \text{oe}$	A1ft	2.5			
		(3)				
	Notes	(7	marks)			
(a)						
M1:	Takes out a factor of x or $-x$. Scored for $\pm x(\pm 9 \pm x^2)$ May be implied by answer or $\pm x(\pm x \pm 3)(\pm x \pm 3)$. Also allow if they attempt to take out a factor of $(\pm x \pm 3)$ so score for $(\pm x \pm 3)$					
A1:	Correct factorisation. $x(3-x)(3+x)$ on its own scores M1A1.					
	Allow eg $-x(x-3)(x+3)$, $x(x-3)(-x-3)$ or other equivalent express	ions				
	Condone an = 0 appearing on the end and condone eg x written as $(x+0)$					
(b)						
	prrect shape (negative cubic) appearing anywhere on a set of axes. It must have a nimum to the left and maximum to the right. Be tolerant of pen slips. Judge the intent the shape. (see examples)					
	sses through each of the origin, $(3, 0)$ and $(-3, 0)$ and no other points on the <i>x</i> axis. he graph should not turn on any of these points). e points may be indicated as just 3 and -3 on the axes. Condone <i>x</i> and <i>y</i> to be the ong way round eg $(0, -3)$ for $(-3, 0)$ as long as it is on the correct axis but do not					
	allow $(-3, 0)$ to be labelled as $(3, 0)$.					

Questi	on Scheme	Marks	AOs
8 (a)	(<i>k</i> =) 0.8	B1	1.1b
		(1)	
(b)	$1 = 0.8 + 1.4 e^{-0.5t} \Longrightarrow 1.4 e^{-0.5t} = 0.2$	M1	3.1b
	$-0.5t = \ln\left(\frac{0.2}{1.4}\right) \Longrightarrow t = \dots$	M1	1.1b
	awrt 3.9 minutes	A1	1.1b
		(3)	
(c)	$\left(\frac{\mathrm{d}P}{\mathrm{d}t}\right) - 0.7\mathrm{e}^{-0.5t}$	M1	3.1b
	$\left(\frac{\mathrm{d}P}{\mathrm{d}t}\right) = -0.7\mathrm{e}^{-0.5t}$ $\left(\frac{\mathrm{d}P}{\mathrm{d}t}\right)_{t=2} = -0.7\mathrm{e}^{-0.5\times2}$	1011	5.10
	= awrt 0.258 (kg/cm ² per minute)	A1	1.1b
		(2)	
	NT : 4 :	(6	marks)
(a)	Notes		
(b) M1: M1: A1:	*Be aware this could be solved entirely using a calculator which is not For using the model with $P = 1$ and their value for k from (a) and proceed $Ae^{\pm 0.5t} = B$. Condone if A or B are negative for this mark. Uses correct log work to solve an equation of the form $Ae^{\pm 0.5t} = B$ leadin They cannot proceed directly to awrt 3.9 without some intermediate work Eg $t = 2\ln 7$ or $-2\ln\left(\frac{1}{7}\right)$ is acceptable. Also allow $1.4e^{-0.5t} = 0.2 \Rightarrow -0.5t = -1.9459 \Rightarrow t =$ This cannot be scored from an unsolvable equation (eg when their k 1s Accept awrt 3.9 minutes or $t = awrt 3.9$ with correct working seen. eg $1.4e^{-0.5t} = 0.2 \Rightarrow t = 3.9$ would be M1M0A0	g to a val g to a val so that e ^{±0.}	ue for <i>t</i> .
(c)	*Be aware this can be solved entirely using a calculator which is not a	acceptabl	e*
M1:	Links rate of change to gradient and differentiates to obtain an expression $Ae^{-0.5t}$ and substitutes $t = 2$. Do not accept $Ate^{-0.5t}$ as the derivative. Beware that substituting $t = 2$ and proceeding from e^{-1} to e^{-2} is M0A0	-	
A1:	Obtains awrt 0.258 with differentiation seen. (Units not required) Condo Awrt ± 0.258 with no working is M0A0. Isw after a correct answer is seen		0.258
(Ignore	e in (c) any spurious notation on the LHS when differentiating such as $P =$	\dots or $\frac{dy}{dx}$	$\frac{1}{2} =)$

Questio	n Scheme	Marks	AOs		
9(a)(i)	$\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9 = p - 2$	B1	1.2		
(ii)	$\log_3\left(\sqrt{x}\right) = \frac{1}{2}p$	B1	1.1b		
		(2)			
(b)	$2\log_3\left(\frac{x}{9}\right) + 3\log_3\left(\sqrt{x}\right) = -11 \Longrightarrow 2p - 4 + \frac{3}{2}p = -11 \Longrightarrow p = \dots$	M1	1.1b		
	p = -2	A1	1.1b		
	$\log_3 x = -2 \Longrightarrow x = 3^{-2}$	M1	1.1b		
	$x = \frac{1}{9}$	A1	1.1b		
		(4)			
	Alternative for (b) not using (a):				
	$2\log_3\left(\frac{x}{9}\right) + 3\log_3\left(\sqrt{x}\right) = -11 \Longrightarrow \log_3\left(\frac{x}{9}\right)^2 + \log_3\left(\sqrt{x}\right)^3 = -11$ $\Rightarrow \log_3\frac{x^2}{9} = -11$	M1	1.1b		
	$\rightarrow \log_3 \frac{1}{81} = 11$				
	$\Rightarrow \frac{x^{\frac{7}{2}}}{81} = 3^{-11} \text{ or equivalent eg } x^{\frac{7}{2}} = 3^{-7}$	A1	1.1b		
	$x^{\frac{7}{2}} = 81 \times 3^{-11} \Longrightarrow x^{\frac{7}{2}} = 3^4 \times 3^{-11} = 3^{-7} \Longrightarrow x = \left(3^{-7}\right)^{\frac{2}{7}} = 3^{-2}$	M1	1.1b		
	$x = \frac{1}{9}$	A1	1.1b		
		(6	marks)		
(a)(i)	Notes				
(a)(i) B1:	Recalls the subtraction law of logs and so obtains $p - 2$				
(a)(ii) B1:	1				
(b)	*Be aware this should be solved by non-calculator methods*				
1	Uses their results from part (a) to form a linear equation in p and attempts to solve leading to a value for p . Allow slips in their rearrangement when solving. Allow a misread forming the equation equal to 11 instead of -11				
A1:	Correct value for <i>p</i>				
	Uses $\log_3 x = p \Longrightarrow x = 3^p$ following through on what they consider to be a value rather than <i>p</i>	their <i>p</i> . It	must		

A1: $(x=)\frac{1}{9}$ cao with correct working seen. Must be this fraction. Do not penalise invisible brackets as long as the intention is clear.

Alternative:

- M1: Correct use of log rules to achieve an equation of the form $\log_3 ... = \log_3 ...$ or $\log_3 ... = a$ number (typically -11). Condone arithmetical slips.
- A1: Correct equation with logs removed.
- M1: Uses inverse operations to find *x*. Condone slips but look for proceeding from $x^{\frac{a}{b}} = ... \Rightarrow x = ...^{\frac{b}{a}}$ where they have to deal with a fractional power.
- A1: $(x =) \frac{1}{9}$ cao with correct working seen. Must be this fraction. Do not penalise invisible brackets as long as the intention is clear.

Questio	on Scheme	Marks	AOs		
10(a)	$y = \frac{1}{3}x^2 - 2\sqrt{x} + 3 \Longrightarrow \frac{dy}{dx} = \frac{2}{3}x - x^{-\frac{1}{2}}$	M1	1.1b		
		A1	1.1b		
	$x = 4 \Longrightarrow y = \frac{13}{3}$	B1	1.1b		
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=4} = \frac{2}{3} \times 4 - 4^{-\frac{1}{2}} \left(=\frac{13}{6}\right) \therefore \ y - \frac{13}{3} = \frac{13}{6} \left(x - 4\right)$	M1	2.1		
	13x - 6y - 26 = 0*	A1*	1.1b		
		(5)			
(b)	$\int \left(\frac{x^2}{3} - 2\sqrt{x} + 3\right) dx = \frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x(+c)$	M1 A1	1.1b 1.1b		
	$y = 0 \Longrightarrow x = 2$	B1	2.2a		
	Area of <i>R</i> is $\left[\frac{x^3}{9} - \frac{4}{3}x^{\frac{3}{2}} + 3x\right]_0^4 - \frac{1}{2} \times (4 - "2") \times "\frac{13}{3}" = \frac{76}{9} - \frac{13}{3}$	M1	3.1a		
	$=\frac{37}{9}$	A1	1.1b		
		(5)	•		
	Notes	(10	marks)		
(a) Ca	lculators: If no algebraic differentiation seen then maximum in a) is N	/IOA0B1N	/1A0*		
M1:	$x^n \to x^{n-1}$ seen at least once $\dots x^2 \to \dots x^1$, $\dots x^{\frac{1}{2}} \to \dots x^{-\frac{1}{2}}$, $3 \to 0$.				
	Also accept on sight of eg $x^{\frac{1}{2}} \rightarrowx^{\frac{1}{2}-1}$				
A1:	Also accept on sight of eg $\dots x \to \dots x$ $\frac{2}{3}x - x^{-\frac{1}{2}}$ or any unsimplified equivalent (indices must be processed) accept the use of				
	0.6x but not rounded or ambiguous values eg $0.6x$ or eg $0.66x$				
B1:	Correct <i>y</i> coordinate of <i>P</i> . May be seen embedded in an attempt of the equilation	uation of	l		
M1:	Fully correct strategy for an equation for <i>l</i> . Look for $y - \frac{13}{3} = \frac{13}{6} (x - x)$	4) where	e their		
	$\frac{13}{6}$ is from differentiating the equation of the curve and substituting in x	$\frac{3}{6}$ is from differentiating the equation of the curve and substituting in $x = 4$ into their $\frac{dy}{dx}$			
	and the y coordinate is from substituting $x = 4$ into the given equation. If they use $y = mx + c$ they must proceed as far as $c = -t$ to score this may	rk			
A1*:	If they use $y = mx + c$ they must proceed as far as $c =$ to score this mark. No not allow this mark if they use a perpendicular gradient. Obtains the printed answer with no errors.				
(b) Ca	lculators: If no algebraic integration seen then maximum in b) is M0A	A0B1M1/	4 0		
M1:	$x^n \rightarrow x^{n+1}$ seen at least once. Eg $x^2 \rightarrowx^3$, $x^{\frac{1}{2}} \rightarrowx^{\frac{3}{2}}$, $3 \rightarrow 3x^1$. Allo	ow eg			
	$\dots x^2 \rightarrow \dots x^{2+1}$ The + <i>c</i> is not a valid term for this mark.				

A1:
$$\frac{x^3}{9} - \frac{4}{3}x^3 + 3x \text{ or any unsimplified equivalent (indices must be processed) accept the use of exact decimals for $\frac{1}{9}$ (0.1) and $-\frac{4}{3}$ (-1.3) but not rounded or ambiguous values.
B1: Deduces the correct value for x for the intersection of l with the x-axis. May be seen indicated on Figure 2.
M1: Fully correct strategy for the area. This needs to include
• a correct attempt at the area of the triangle using their values (could use integration)
• a correct attempt at the area under the curve using 0 and 4 in their integrated expression
• the two values subtracted.
Be aware of those who mix up using the y-coordinate of P and the gradient at P which is
M0. The values embedded in an expression is sufficient to score this mark.
A1: $\frac{37}{9}$ or exact equivalent eg $4\frac{1}{9}$ or 4.1 but not 4.111... isw after a correct answer
Be aware of other strategies to find the area R
eg Finding the area under the curve between 0 and 2 and then the difference between the curve and the straight line between 2 and 4:

$$\int_{0}^{2} \frac{x^2}{3} - 2\sqrt{x} + 3 \, dx + \int_{2}^{+} \frac{x^2}{3} - 2\sqrt{x} - \frac{13}{6} x + \frac{22}{3} \, dx$$
M1 $x^n \rightarrow x^{n-1}$ seen at least once on either integral (or on the equation of the line $y = \frac{1}{3}x + 3$)
A1 for correct integration of either integral $\frac{x^3}{9} - \frac{4}{3}x^3 + 3x$ or $\frac{x^3}{9} - \frac{4}{3}x^2 - \frac{13}{12}x^2 + \frac{22}{3}x$ (may be unsimplified/uncollected terms but the indices must be processed with/without the +C)
B1 Correct strategy for the area eg.
 $\left[\frac{x^3}{9} - \frac{4}{3}x^1 + 3x\right]_0^2 + \left[\frac{x^3}{9} - \frac{4}{3}x^2 - \frac{13}{12}x^2 + \frac{22}{3}x\right]_2^4 = \frac{62}{9} - \frac{4}{3}(2)^{\frac{1}{2}} + \frac{76}{9} - \frac{101}{9} + \frac{4}{3}(2)^{\frac{5}{2}}$
A1: $\frac{37}{9}$ or exact equivalent eg $4\frac{1}{9}$ or 4.1 but not 4.1 or 4.111....
You could also see use of the area eg.
 $\left[\frac{x^3}{9} - \frac{4}{3}x^1 + 3x\right]_0^2 + \left[\frac{x^3}{9} - \frac{4}{3}x^2 - \frac{13}{2}x^2 + \frac{22}{3}x\right]_2^4 = \frac{62}{9} - \frac{4}{3}(2)^{\frac{1}{2}} + \frac{76}{9} - \frac{101}{9} + \frac{4}{3}(2)^{\frac{5}{2}}$
A1: $\frac{37}{9}$ or exact equivalent eg $4$$$

11(a)	$(x\pm 5)^2 + (y\pm 4)^2$ (i) Centre is (5, 4)	M1	1.1b
-	(i) Centre is (5, 4)	Λ 1	
-		A1	1.1b
	(ii) Radius is 3	A1	1.1b
		(3)	
(b)	$2y + x + 6 = 0 \Longrightarrow y = -\frac{1}{2}x + \Longrightarrow -\frac{1}{2} \to 2$	B 1	2.2a
	$m_N = 2 \Longrightarrow y - 4 = 2(x - 5)$	M1	3.1a
-	$y-4=2(x-5), 2y+x+6=0 \Rightarrow x=, y=$		
_	Intersection is at $\left(\frac{6}{5}, -\frac{18}{5}\right)$ oe	A1	1.1b
	Distance from centre to intersection is $\sqrt{\left(5-\frac{6}{5}\right)^2+\left(4+\frac{18}{5}\right)^2}$	dM1	3.1a
	So distance required is $\sqrt{("5"-"\frac{6}{5}")^2 + ("4"+"\frac{18}{5}")^2 - "3"}$		
	$=\frac{19\sqrt{5}}{5}-3$ (or awrt 5.50)	A1	1.1b
		(5)	
	Notes	(8	marks
	tempts to complete the square for both x and y terms $(x \pm 5)^2 \dots (y \pm 4)$ plied by a centre of $(\pm 5, \pm 4)$	$)^2$ which m	ay be
A1: Cer	ntre (5, 4)		
A1: Rad	dius 3		
(b)			
	duces the gradient of the perpendicular to l is 2. May be seen in the equippendicular line to l	uation for	the
the	fully correct strategy for finding the intersection. This requires use of the perpendicular which cannot be the gradient of l ok for $y - "4" = "2"(x - "5")$ where (5,4) is their centre being solved s	-	
wit	th the equation of l not be concerned with the mechanics of their rearrangement when sol nultaneously.		

 $\left(\frac{6}{5}, -\frac{18}{5}\right)$ or equivalent eg (1.2, -3.6)A1: They do not have to be written as coordinates and may be seen within their working rather than explicitly stated. They may also be written on the diagram. dM1: Fully correct strategy for finding the required distance e.g. correct use of Pythagoras to find the distance between their centre and their intersection and then completes the problem by subtracting their radius. Condone a sign slip subtracting their $-\frac{18}{5}$ It is dependent on the previous method mark. Alternatively, they solve simultaneously their y = 2x - 6 with the equation of the circle and then find the distance between this intersection point and the point of intersection between l and the normal. They must choose the smaller positive root of the solution to their quadratic. Eg $(x-5)^{2} + (2x-6-4)^{2} = 9 \Longrightarrow 5x^{2} - 50x + 125 = 9$ $x = \frac{25 - 3\sqrt{5}}{5}, y = \frac{20 - 6\sqrt{5}}{5}$ Distance between two points: $\sqrt{\left("\frac{25-3\sqrt{5}}{5}"-"\frac{6}{5}"\right)^2 + \left("\frac{20-6\sqrt{5}}{5}"+"\frac{18}{5}"\right)^2}$ Correct value e.g. $\sqrt{\frac{361}{5}} - 3$ or $\frac{19\sqrt{5} - 15}{5}$). Also allow awrt 5.50 A1: Isw after a correct answer is seen. Alt (b) Be aware they may use vector methods: B1M1: Attempts to find the perpendicular distance between their (5,4) and x+2y+6=0 by substituting the values into the formula to find the distance between a point (x, y) and a line ax + by + c = 0 $\Rightarrow \frac{|ax+by+c|}{\sqrt{a^2+b^2}} = \frac{|"5"\times"1"+"4"\times"2"+"6"|}{\sqrt{"1"^2+"2"^2}}$ $\frac{|5 \times 1 + 4 \times 2 + 6|}{\sqrt{1^2 + 2^2}} \left(= \frac{19}{\sqrt{5}} \right)$ A1: dM1: Distance $= "\frac{19\sqrt{5}}{5}"-3$ $19\sqrt{5}-15$ A1:

Question	Scheme	Marks	AOs
12(a)	<i>V 21</i> 255 1 355		
	$V = \pi r^2 h = 355 \Longrightarrow h = \frac{355}{\pi r^2}$		
	(, 355, 355)	B1	1.1b
	$\left(\text{or } rh = \frac{355}{\pi r} \text{ or } \pi rh = \frac{355}{r}\right)$		
	$C = 0.04 \left(\pi r^2 + 2\pi rh \right) + 0.09 \left(\pi r^2 \right)$	M1	3.4
	$C = 0.13\pi r^2 + 0.08\pi rh = 0.13\pi r^2 + 0.08\pi r \left(\frac{355}{\pi r^2}\right)$	dM1	2.1
	$C = 0.13\pi r^2 + \frac{28.4}{r} *$	A1*	1.1b
		(4)	
(b)	$\frac{\mathrm{d}C}{\mathrm{d}r} = 0.26\pi r - \frac{28.4}{r^2}$	M1	3.4
_		A1	1.1b
	$\frac{\mathrm{d}C}{\mathrm{d}r} = 0 \Longrightarrow r^3 = \frac{28.4}{0.26\pi} \Longrightarrow r = \dots$	M1	1.1b
	$r = \sqrt[3]{\frac{1420}{13\pi}} = 3.26$	A1	1.1b
		(4)	
(c)	$\left(\frac{d^2C}{dr^2}\right) = 0.26\pi + \frac{56.8}{r^3} = 0.26\pi + \frac{56.8}{"3.26"^3}$	M1	1.1b
-	$\left(\frac{\mathrm{d}^2 C}{\mathrm{d}r^2}\right)$ = $\left(2.45\right) > 0$ Hence minimum (cost)	A1	2.4
		(2)	
(d)	$C = 0.13\pi ("3.26")^2 + \frac{28.4}{"3.26"}$	M1	3.4
-	(<i>C</i> =)13	A1	1.1b
		(2)	
		(12	marks)
	Notes		
(a)			
	rect expression for <i>h</i> or <i>rh</i> or πrh in terms of <i>r</i> . This may be implie stitution.	d by their lat	er
M1: Sco	ared for the sum of the three terms of the form $0.04r^2$, $0.09r^2$ are	nd 0.04× <i>rk</i>	ı
The	e 0.04× <i>rh</i> may be implied by eg 0.04× <i>r</i> × $\frac{355}{\pi r^2}$ if <i>h</i> has already be	en replaced	
dM1: Sub	postitutes <i>h</i> or <i>rh</i> or πrh into their equation for <i>C</i> which must be of a bove) to obtain an equation connecting <i>C</i> and <i>r</i> .		form

It is dependent on a correct expression for *h* or *rh* or πrh in terms of *r*

Achieves given answer with no errors. Allow Cost instead of C but they cannot just have A1*: an expression. As a minimum you must see the separate equation for volume the two costs for the top and bottom separate before combining a substitution before seeing the $\frac{28.4}{r}$ term Eg 355 = $\pi r^2 h$ and $C = 0.04\pi r^2 + 0.09\pi r^2 + 0.04 \times 2\pi r h = 0.13\pi r^2 + 0.08\pi \times \left(\frac{355}{\pi r}\right)$ (b) Differentiates to obtain at least $r^{-1} \rightarrow r^{-2}$ M1: Correct derivative. A1: Sets $\frac{dC}{dr} = 0$ and solves for r. There must have been some attempt at differentiation of the M1: equation for $C(...r^2 \rightarrow ...r \text{ or } ...r^{-1} \rightarrow ...r^{-2})$ Do not be concerned with the mechanics of their rearrangement and do not withhold this mark if their solution for r is negative A1: Correct value for r. Allow exact value or awrt 3.26 (c) Finds $\frac{d^2C}{dr^2}$ at their (positive) *r* or considers the sign of $\frac{d^2C}{dr^2}$. M1: This mark can be scored as long as their second derivative is of the form $A + \frac{B}{r^3}$ where A and B are non zero A1: Requires A correct $\frac{d^2C}{dr^2}$ Either • deduces $\frac{d^2C}{dr^2} > 0$ for r > 0 (without evaluating). There must be some minimal explanation as to why it is positive. • substitute their positive r into $\frac{d^2C}{dr^2}$ without evaluating and deduces $\frac{d^2C}{dr^2} > 0$ for r > 0• evaluate $\frac{d^2C}{dr^2}$ (which must be awrt 2.5) and deduces $\frac{d^2C}{dr^2} > 0$ for r > 0(d) Uses the model and their positive r found in (b) to find the minimum cost. Their rM1: embedded in the expression is sufficient. May be seen in (b) but must be used in (d).

(C =) 13 ignore units

A1:

Question	Scheme		Marks	AOs
13(a)	$\frac{1}{\cos\theta} + \tan\theta = \frac{1+\sin\theta}{\cos\theta} \text{ or } \frac{(1+\sin\theta)\cos\theta}{\cos^2\theta}$		M1	1.1b
	$=\frac{1+\sin\theta}{\cos\theta}\times\frac{1-\sin\theta}{1-\sin\theta}=\frac{1-\sin^2\theta}{\cos\theta(1-\sin\theta)}=\frac{\cos^2\theta}{\cos\theta(1-\sin\theta)}$ or $\frac{(1+\sin\theta)\cos\theta}{\cos^2\theta}=\frac{(1+\sin\theta)\cos\theta}{1-\sin^2\theta}=\frac{(1+\sin\theta)\cos\theta}{(1+\sin\theta)(1-\sin\theta)}$		dM1	2.1
	$=\frac{\cos\theta}{1-\sin\theta}*$		A1*	1.1b
			(3)	
(b)	$\frac{1}{\cos 2x} + \tan 2x = 3\cos 2x$ $\Rightarrow 1 + \sin 2x = 3\cos^2 2x = 3(1 - \sin^2 2x)$	$\frac{\cos 2x}{1-\sin 2x} = 3\cos 2x$ $\Rightarrow \cos 2x = 3\cos 2x(1-\sin 2x)$	M1	2.1
	$\Rightarrow 3\sin^2 2x + \sin 2x - 2 = 0$	$\Rightarrow \cos 2x(2 - 3\sin 2x) = 0$	A1	1.1b
	$\sin 2x = \frac{2}{3}, \ (-1) \Longrightarrow 2x = \Longrightarrow x =$		M1	1.1b
	x = 20.9°, 69.1°		A1 A1	1.1b 1.1b
			(5)	
	Note		(8)	marks)
M1: Co	ting with the LHS: Condone if another values ombines terms with a common denomination mmon denominator. ther: • $\frac{1+\sin\theta}{\cos\theta}$: Multiplies numerator and of two squares and applies $\cos^2\theta =$ • $\frac{(1+\sin\theta)\cos\theta}{\cos^2\theta}$: Uses $\cos^2\theta = 1-\sin^2\theta$ difference of two squares	tor. The numerator must be corrected denominator by $1 - \sin \theta$, uses t $1 - \sin^2 \theta$	ect for tl he diffe	heir
	is dependent on the previous method mar ally correct proof with correct notation an		their wo	ыlг

A1*: Fully correct proof with correct notation and no errors in the main body of their work. Withhold this mark for writing eg sin instead of $\sin \theta$ anywhere in the solution and for eg $\sin \theta^2$ instead of $\sin^2 \theta$

Alt(a) If starting with the RHS: Condone if another variable is used for θ except for the final mark Multiplies by $\frac{1+\sin\theta}{1+\sin\theta}$ leading to $\frac{\cos\theta(1+\sin\theta)}{1-\sin^2\theta}$ or M1: Multiplies by $\frac{\cos\theta}{\cos\theta}$ leading to $\frac{\cos^2\theta}{\cos\theta(1-\sin\theta)}$ dM1: Applies $\cos^2 \theta = 1 - \sin^2 \theta$ and cancels the $\cos \theta$ factor from the numerator and denominator leading to $\frac{1+\sin\theta}{\cos\theta}$ or Applies $\cos^2 \theta = 1 - \sin^2 \theta$ and uses the difference of two squares leading to $(1+\sin\theta)(1-\sin\theta)$ $\cos\theta(1-\sin\theta)$ It is dependent on the previous method mark. A1*: Fully correct proof with correct notation and no errors in the main body of their work. If they work from both the LHS and the RHS and meet in the middle with both sides the same then they need to conclude at the end by stating the original equation. *Be aware that this can be done entirely on their calculator which is not acceptable* (b) M1: Either multiplies through by $\cos 2x$ and applies $\cos^2 2x = 1 - \sin^2 2x$ to obtain an equation in sin 2x only or alternatively sets $\frac{\cos 2x}{1-\sin 2x} = 3\cos 2x$ and multiplies by $1 - \sin 2x$ Correct equation or equivalent. The = 0 may be implied by their later work A1: (Condone notational slips in their working) M1: Solves for sin 2x, uses arcsin to obtain at least one value for 2x and divides by 2 to obtain at least one value for x. The roots of the quadratic can be found using a calculator. They cannot just write down values for x from their quadratic in $\sin 2x$ For 1 of the required angles. Accept awrt 21 or awrt 69. Also accept awrt 0.36 rad or awrt A1: 1.21 rad For both angles (awrt 20.9 and awrt 69.1) and no others inside the range. A1: If they find x = 45 it must be rejected. (Condone notational slips in their working)

Questio	n Scheme	Marks	AOs			
14(i)	The statement is not true because e.g. when $x = -4$, $x^2 = 16$ (which is > 9 but $x < 3$)	B1	2.3			
		(1)				
(ii)	$n^{3} + 3n^{2} + 2n = n(n^{2} + 3n + 2) = n(n+1)(n+2)$	M1	2.1			
	n(n + 1)(n + 2) is the product of 3 consecutive integers	A1	2.2a			
	As $n(n + 1)(n + 2)$ is a multiple of 2 and a multiple of 3 it must be a multiple of 6 and so $n^3 + 3n^2 + 2n$ is divisible by 6 for all integers <i>n</i>	A1	2.4			
		(3)				
	(4 marks					
	Notes					
]	 concludes not true There should be no errors seen including the use of brackets. The conclusion could be a preamble. Do not accept "sometimes true" or equivalent. Alternatively, explains why the statement is not true Eg. It is not true as when x < -3 then x² > 9 so x does not have to be greater than 3. Eg. x² > 9 ⇒ x < -3 or x > 3 so not true					
(ii)						
M1: 7	Takes out a factor of <i>n</i> and attempts to factorise the resulting quadratic.					
A1:]	reduces that the expression is the product of 3 consecutive integers					
	xplains that as the expression is a multiple of 3 and 2, it must be a multiple of 6 and so divisible by 6					
•	ee any method which appears to be credit worthy but is not covered l 1d to review	oy the scl	neme			