

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Further Pure Mathematics F3 (WFM03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log number P72403A Publications Code WFM03_01_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1(a)	$\left(\cosh A \cosh B + \sinh A \sinh B =\right) \left(\frac{e^{A} + e^{-A}}{2}\right) \left(\frac{e^{B} + e^{-B}}{2}\right) + \left(\frac{e^{A} - e^{-A}}{2}\right) \left(\frac{e^{B} - e^{-B}}{2}\right)$ $= \frac{e^{A+B} + e^{A-B} + e^{B-A} + e^{-A-B} + e^{A+B} - e^{A-B} - e^{B-A} + e^{-A-B}}{4}$ Expresses the lhs in terms of exponentials correctly, combines terms and combines fractions with common denominator (Brackets not needed due to fraction lines)		M1
	$=\frac{2e^{A+B}+2e^{-(A+B)}}{4}=\frac{e^{A+B}}{Fully \text{ correct pro-}}$	-	A1*
			(2)
(b)	$= \left(\frac{2 + \frac{1}{2}}{2}\right) \cosh x$ Applies the result from part (a) and e	sh $(\ln 2)$ + sinh x sinh $(\ln 2)$ $x + \left(\frac{2 - \frac{1}{2}}{2}\right)$ sinh x valuates both cosh(ln2) and sinh(ln2) must be seen	M1
	$\frac{5}{4}\cosh x + \frac{3}{4}\sinh x = 5\sinh x$ $\Rightarrow \frac{5}{4}\cosh x = \frac{17}{4}\sinh x$	Collects terms and reaches $a \cosh x = b \sinh x$ oe Depends on the first M mark	dM1
	$5\cosh x = 17\sinh x$ oe	Correct equation	A1
	$x = \frac{1}{2} \ln \left(\frac{1 + \frac{5}{17}}{1 - \frac{5}{17}} \right)$ Or $\frac{e^{2x} - 1}{e^{2x} + 1} = \frac{5}{17} \Longrightarrow x = \dots$	Moves to $tanh x$ and uses the correct logarithmic form for $artanhx$ or reverts to exponential forms and solves for x Depends on both M marks	ddM1
	$x = \frac{1}{2}\ln\left(\frac{11}{6}\right)$	Cao $\left(\text{Accept integer multiples of } \frac{11}{6} \right)$	A1
			(5)
			Total 7

Way 2			
(b)	$\cosh(x+\ln 2) = \cosh x \cos x$	$sh(\ln 2) + sinh x sinh(\ln 2)$	
	$=\left(\frac{2+\frac{1}{2}}{2}\right)\cosh x$	$= \left(\frac{2+\frac{1}{2}}{2}\right)\cosh x + \left(\frac{2-\frac{1}{2}}{2}\right)\sinh x$	
	Applies the result from part (a) and evaluates both cosh(ln2) and sinh(ln2) Use of (a) must be seen		
	\Rightarrow 5 cosh x dM1: Collects terms and reaches an equati A1: Correct equation		dM1A1
	$5\left(\frac{e^{x} + e^{-x}}{2}\right) = 17\left(\frac{e^{x} - e^{-x}}{2}\right)$		
	$12e^{x} = 22e^{-x} \Longrightarrow e^{2x} = \frac{22}{6} \Longrightarrow x = \dots$	Changes to exponentials (correct forms) And solves for <i>x</i>	ddM1
	$x = \frac{1}{2} \ln\left(\frac{11}{6}\right)$	Cao (Accept integer multiples of $\frac{11}{6}$)	A1
Way 3			
	$\cosh(x+\ln 2) = \cosh x \cosh(\ln 2) + \sinh x \sinh(\ln 2)$		
	$\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)\left(\frac{\mathrm{e}^{\ln 2}+\mathrm{e}^{-\ln 2}}{2}\right)+\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-2}}{2}\right)$	$\frac{e^{-x}}{2} \left(\frac{e^{\ln 2} - e^{-\ln 2}}{2} \right) = 5 \left(\frac{e^{x} - e^{-x}}{2} \right)$	M1
	funct		
	$\frac{\text{Use of (a) n}}{\text{eg } 5e^{x} + 5e^{-x} = 17e^{x} - 17e^{-x} \text{ oe}}$	Evaluates $e^{\ln 2}$ and $e^{-\ln 2}$ and starts to collect terms	dM1
	$12e^{2x} = 22 \Longrightarrow e^{2x} = \frac{11}{6}$	Correct value for e^{2x}	A1
	<i>x</i> =	Solves for <i>x</i>	ddM1
	$x = \frac{1}{2}\ln\left(\frac{11}{6}\right)$	Cao $\left(\text{Accept integer multiples of } \frac{11}{6} \right)$	A1

NB: Squaring and obtaining a value for sinh*x* **or cosh***x* introduces extra answers. If these extra answers are then eliminated M1A1 is available but if no attempt at elimination is made award M0A0

Question Number	Scheme	Notes	Marks
	Throughout both parts of this question do not penalise omission of dx or d θ		
2(i)	$5+4x-x^2=9-(x-2)^2$ oe	Correct completion of the square Any correct result	B1
	$\int \frac{1}{\sqrt{5+4x-x^2}} \mathrm{d}x = \int \frac{1}{\sqrt{9-(x^2)^2}} \mathrm{d}x =$	$\frac{1}{(-2)^2} dx = \sin^{-1}\left(\frac{x-2}{3}\right)(+c)$	M1A1
	M1: Obtains k	$\sin^{-1}f(x)$	
	A1: Correct integratio	$\frac{n (+ c \text{ not needed})}{ }$	(3)
(ii)	$x = 6 \Longrightarrow \theta = \frac{\pi}{3}$		
	$x = 2\sqrt{3} \Longrightarrow \theta = \frac{\pi}{6}$	Correct θ limits in radians	B1
	$\int \frac{18}{(x^2 - 9)^{\frac{3}{2}}} \mathrm{d}x = \int \frac{1}{2} \mathrm{d}x$	$\frac{18 \times 3 \sec \theta \tan \theta}{\left(9 \sec^2 \theta - 9\right)^{\frac{3}{2}}} \mathrm{d}\theta$	M1
	M1: For $\int \frac{18}{\left(\left(3\sec\theta\right)^2 - \right)^2}$	$\overline{9}^{\frac{3}{2}} \times \left(\text{their} \frac{\mathrm{d}x}{\mathrm{d}\theta} \right) \mathrm{d}\theta$	
	$\int \frac{54 \sec \theta \tan \theta}{\left(9 \sec^2 \theta - 9\right)^{\frac{3}{2}}} \mathrm{d}\theta = 54 \int \frac{\sec \theta}{27 \mathrm{ta}}$	$\frac{\tan\theta}{\ln^3\theta} d\theta = 2 \int \frac{\sin\theta\cos^3\theta}{\cos^2\theta\sin^3\theta} d\theta$	
	$2\int \frac{\cos\theta}{\sin^2\theta} \mathrm{d}\theta \mathrm{oe}$		A1
	Correct simplif		
	$2\int \frac{\cos\theta}{\sin^2\theta} \mathrm{d}\theta = 2\int \operatorname{cosec}\theta$		M1
	Obtains kcos	· · /	
	$\left[-2\operatorname{cosec}\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = -2\operatorname{cosec}\frac{\pi}{3} + 2\operatorname{cosec}\frac{\pi}{6}$	Uses changed limits correctly. Depends on all previous method marks.	d M1
	$=4-\frac{4}{3}\sqrt{3}$	Cao Allow these 2 marks if limits have been given in degrees	A1
			(6)
			Total 9

ALT	For B1 and final dM1A1 of (ii)	
	dM1: Reverse the substitution A1: Correct reversed result	
	A1: enter as B1 on e-PEN Correct final answer	

Question Number	Scheme	Notes	Marks
3(a)	3	Correct value seen in (a)	B1
			(1)
(b)	$\begin{pmatrix} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8x \\ 8y \\ 8z \end{pmatrix} \Rightarrow 5x$ Correct method for the (making a variable equal to 0 is	e eigenvector	M1
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$	Any correct eigenvector	A1
			(2)
(c)	$ \mathbf{M} - \lambda \mathbf{I} = \begin{vmatrix} -2 - \lambda & 5 \\ 5 & 1 - \\ 0 & -3 \end{vmatrix}$ $\Rightarrow (-2 - \lambda) [(1 - \lambda)(6 - \lambda) - 9] - 3 \\\text{NB CE is } \lambda^3 - 5\lambda^2 - 42\lambda + 144 = 0 \text{ but } \mathbf{I}$	$5[5(6-\lambda)]=0 \Longrightarrow \lambda = \dots$	M1
	$\lambda = -6$	Correct third eigenvalue The work for these 2 marks may be seen in (a) – award them Correct third eigenvalue by a different method – send to review	A1
	$\mathbf{D} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -6 \end{pmatrix}$	Correct D following through their third eigenvalue	A1ft
	$\begin{pmatrix} -2 & 5 & 0 \\ 5 & 1 & -3 \\ 0 & -3 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -6x \\ -6y \\ -6z \end{pmatrix} \Rightarrow 5x + y \\ -3y$ Correct strategy for 3 ^r		M1
	$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{14}} & -\frac{5}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{14}} & \frac{4}{\sqrt{42}} \\ \frac{1}{\sqrt{3}} & -\frac{3}{\sqrt{14}} & \frac{1}{\sqrt{42}} \end{pmatrix}$	Fully correct matrix consistent with their D May have $\frac{\sqrt{3}}{3}$ etc	A1
			(5)
			Total 8

Question Number	Scheme	Notes	Ma	arks
4.	$y = \operatorname{artanh}\left(\frac{\cos x + a}{\cos x - a}\right)$			
	$\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{(\cos x - a) \times -\sin x - (\cos x + a) \times -\sin x}{(\cos x - a)^2}$ or $\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \left(-\sin x \times (\cos x - a)^{-1} + (\cos x + a) \times \sin x (\cos x - a)^{-2}\right)$ M1: Correct method for the derivative. This requires $\frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times An$ attempt at the quotient (or product) rule. $\frac{A1: Correct derivative in any form}{(\cos x - a)^2}$			l
	$= \frac{(\cos x - a)^2}{(\cos x - a)^2 - (\cos x + a)^2} \times \frac{2a \sin x}{(\cos x - a)^2} = \frac{2a \sin x}{-4a \cos x} = \dots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.			
	$=-\frac{1}{2}\tan x$ cso		A1	(4)
Way 2	$y = \operatorname{artanh}\left(\frac{\cos x + a}{\cos x - a}\right) \Longrightarrow \tanh y = \frac{\cos x}{\cos x}$ Takes tanh of both sides, obtains sech ² $y \frac{dy}{dx}$		M1	
	$\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{2a \sin x}{(\cos x - a)^2}$ Correct derivative in any form $= \frac{(\cos x - a)^2}{(\cos x - a)^2 - (\cos x + a)^2} \times \frac{2a \sin x}{(\cos x - a)^2} = \frac{2a \sin x}{-4a \cos x} = \dots$ Uses correct processing to reach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$ Depends on the first method mark.			
	1	cso	A1	(4)

Way 3	Uses substitution $u = \frac{\cos x + a}{\cos x - a}$, obtains $\frac{du}{dx} \left(= \frac{2a \sin x}{(\cos x - a)^2} \right)$ by quotient rule and $\frac{dy}{du} \left(= \frac{1}{1 - u^2} \right)$ followed by chain rule to obtain $\frac{dy}{dx} = \frac{1}{1 - \left(\frac{\cos x + a}{\cos x - a}\right)^2} \times \frac{2a \sin x}{(\cos x - a)^2}$			
	Correct derivat	ive in any form	A1	
	Uses correct processing to	preach $\lambda \frac{\sin x}{\cos x}$ or $\lambda \tan x$	dM1	
	Depends on the fi	rst method mark.		
	$=-\frac{1}{2}\tan x$	cso	A1	(4)
			Tota	al 4
Way 4	$y = \frac{1}{2} \ln \left(\frac{1 + \frac{\cos x + a}{\cos x - a}}{1 - \frac{\cos x + a}{\cos x - a}} \right) = \frac{1}{2} \ln \left(-\frac{\cos x}{a} \right)$ $\frac{dy}{dx} = \frac{1}{2} \times \frac{1}{-\frac{\cos x}{a}} \times \left(\frac{\sin x}{a} \right)$	M1: Converts to correct ln form and uses chain rule to differentiate A1: Correct derivative in any form	M1A1	
	Uses correct processing to	$\cos x$	dM1	
	Depends on the fi	rst method mark.		
	$=-\frac{1}{2}\tan x$	CSO	A1	
				(4)

Question Number	Scheme	Notes	Marks
5	$x = 4e^{\frac{1}{2}t}, y = e^{\frac{1}{2}t}$	$e^t - t$ $0 \leqslant t \leqslant 4$	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\mathrm{e}^{\frac{1}{2}t}, \frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^t - 1$	Correct derivatives	B1
	NB: Allow missing dt in the following i	ntegration work	
	$S = (2\pi) \int y \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \left(\mathrm{d}t\right) =$	$(2\pi)\int \left(e^{t}-t\right)\sqrt{\left(4e^{\frac{1}{2}t}\right)^{2}+\left(e^{t}-t\right)^{2}} \left(dt\right)$	
	$\left(=(2\pi)\int (e^t-t)\sqrt{4e^t+e^{2t}-2e^t+1}\right)$	$(\mathrm{d}t)$	M1
	**	formula with or w/o the 2π	
	$= (2\pi) \int (e^t - t) (e^t + 1) (dt)$	Correct simplified integral Brackets must be present unless implied by subsequent work but award by implication if	A1
	-	$(2\pi)\int (e^{2t}+e^t-te^t-t)(dt)$ is seen	
	$= (2\pi) \int (e^{t} - t) (e^{t} + 1) (dt) = (2\pi) \int (e^{2t} + e^{t} - te^{t} - t) (dt)$ $= (2\pi) \left[\frac{1}{2} e^{2t} + e^{t} - te^{t} + e^{t} - \frac{1}{2} t^{2} \right]$ B1: For $\int te^{t} dt = te^{t} - e^{t} (+c)$		
			B1A1
		prrect integration	
		eparate parts and score B1A1 if both parts prrect)	
$= 2\pi \left[\frac{1}{2} e^{2t} + 2e^{t} - te^{t} - \frac{1}{2}t^{2} \right]_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} \right\}_{0}^{4} = 2\pi \left\{ \left(\frac{1}{2} e^{8} + 2e^{4} - 4e^{4} - 8 \right) - \frac{1}{2}t^{2} + 2e^{4} + $			DA
	Applies the limits 0 and 4 Must include 2π now. If 2 integrals have been used limits must be applied to both and the results added Depends on the first M mark (and some valid integration)		dM1
	$\frac{1}{\pi (e^8 - 4e^4 - 21)}$	Cao	A1
			(7)
			Total 7

Question Number	Scheme	Notes	Marks
6(a)	$\mathbf{A} = \begin{pmatrix} x \\ 2 \\ -4 \end{pmatrix}$	$ \begin{array}{ccc} 1 & 3 \\ 4 & x \\ -2 & -1 \end{array} $	
	NB: Work for (a) can o	nly be awarded in (a)	
	$ \mathbf{A} = x(-4+2x) - (-2+4x) + 3(-4+16)$	Correct determinant attempt (expand by any row or column) or use the Rule of Sarrus (send to review if unsure) Sign errors allowed only within the brackets	M1
	$=2x^2-8x+38$	Correct simplified determinant	A1
	$2x^2 - 8x + 38 = 2(x - 2)^2 + 30$		
	or $\frac{d}{dx} (2x^2 - 8x + 38) = 4x - 8 = 0 \Longrightarrow x = 2$ $\implies 2x^2 - 8x + 38 = \dots$ or	Starts the process of showing det $\mathbf{A} \neq 0$ E.g. Completes the square, finds the minimum point or finds discriminant May find discriminant of $x^2 - 4x + 19 =$	M1
	$b^2 - 4ac = 64 - 4 \times 2 \times 38 = \dots$	Appropriate reasoning for their chosen	
	$2x^{2} - 8x + 38 \ge 30$ or $b^{2} - 4ac < 0$ Therefore det $\mathbf{A} \ne 0$ which means \mathbf{A} is non- singular	method and a conclusion stating that A is non-singular. All 3 previous marks needed (No need to evaluate a discriminant, so ISW slips in calculation provided $64-4\times2\times38=$ or $16-4\times19=$ seen	A1cso
(b)	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$	$(4+16)$ $(4+2\pi)$ (24π) (12)	(4)
	$\begin{pmatrix} x & 1 & 3 \\ 2 & 4 & x \\ -4 & -2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -4+2x & -2+4x &$	each at least a matrix of cofactors rect columns needed	M1A1
	$\begin{pmatrix} -4+2x & 2-4x & 12 \\ -5 & -x+12 & 2x-4 \\ x-12 & -x^2+6 & 4x-2 \end{pmatrix} \rightarrow \begin{pmatrix} -4+2x & -4x & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & 4x-2 & -2x & -4x \\ x-12 & -x^2+6 & -4x & -2x & -4x \\ x-12 & -x^2+6 & -2x & -4x & -2x & -4x \\ x-12 & -x^2+6 & -2x & -4x & -2x & -4x \\ x-12 & -x^2+6 & -2x & -2x & -4x & -2x & -4x \\ x-12 & -x^2+6 & -2x & -$	$ \begin{bmatrix} -4+2x & -5 & x-12 \\ 2-4x & -x+12 & -x^2+6 \\ 12 & 2x-4 & 4x-2 \end{bmatrix} $	dM1A1
	dM1: Transposes and divid	les by their determinant.	

If their original determinant has been divided by 2 (acceptable for (a)) and then used		
here it is not their determinant and so scores dM0		
2 correct rows or 2 correct columns needed from their previous matrix		
Depends on previous method mark.		
A1: Correct matrix		
	Total 8	

Question Number	Scheme	Notes	Marks	
7.	$I_n = \int \frac{x^n}{\sqrt{10 - x^2}} \mathrm{d}x \qquad n \in \mathbb{N}, \ x < \sqrt{10}$			
(a)	$I_{n} = \int \frac{x^{n}}{\sqrt{10 - x^{2}}} dx = \int \frac{x^{n-1} \times x}{\sqrt{10 - x^{2}}} dx$ Writes x^{n} as $x \times x^{n-1}$			
	$\int \frac{x^{n-1} \times x}{\sqrt{10 - x^2}} dx = -x^{n-1} \left(10 - x^2\right)^{\frac{1}{2}} + (n-1) \int x^{n-2} \left(10 - x^2\right)^{\frac{1}{2}} dx$			
	dM1: Uses integration $\int \frac{x^{n-1} \times x}{\sqrt{10 - x^2}} dx = \alpha x^{n-1} (10 - x)$	$(10 - x^2)^{\frac{1}{2}} + \beta \int x^{n-2} (10 - x^2)^{\frac{1}{2}} dx$	dM1A1	
	$A1: \text{ Correct of}$ $= \dots + (n-1) \int x^{n-2} (10) dx^{n-2} = 0$	$(-x^2)(10-x^2)^{-\frac{1}{2}} dx$		
	$= \dots + 10(n-1) \int x^{n-2} (10-x^2)^{-\frac{1}{2}}$	$dx - (n-1) \int x^n (10 - x^2)^{-\frac{1}{2}} dx$	d M1	
	Applies $(10-x^2)^{\frac{1}{2}} = (10-x^2)(10-x^2$			
	$= \dots + 10(n-1)I_{n-2} - (n-1)I_n \Longrightarrow nI_n$	Introduces I_{n-2} and I_n and makes progress to the given result	d M1	
	$nI_n = 10(n-1)I_{n-2} - x^{n-1}(10 - x^2)^{\frac{1}{2}} *$ Fully correct proof with no errors (recovery of missing brackets counts as an error) as		A1*	
	does miss	sing dx	(6)	
(b)	$I_1 = \int_0^1 \frac{x}{\sqrt{10 - x^2}} \mathrm{d}x = \left[-\left(1 - \frac{1}{x}\right) \right]_0^1 \mathrm{d}x$	$(0-x^2)^{\frac{1}{2}} \bigg]_0^1 \left(=-3+\sqrt{10}\right)$	M1	
	Correct method for I_1 Limi			
		Applies the reduction formula at least once Allow with 3 or $\left[-x^4 \left(10-x^2\right)^{\frac{1}{2}}\right]_0^1$	M1	
	$I_5 = 8I_3 - \frac{3}{5} = 8\left(\frac{20}{3}I_1 - \frac{1}{3}\right)$) 0 0 0		
	$I_5 = \frac{160}{3} \left(\sqrt{10} \right)$	$(\bar{b}-3)-\frac{43}{5}$	M1	
	Completes the process using their <i>I</i> ₁ to obtain a numerical value for <i>I</i> ₅ Limits must now be substituted			
	$=\frac{1}{15} \Big(800\sqrt{10} - 2529\Big)$	Cao	A1	
			(4) Tradition	
			Total 10	

Question Number	Scheme	Notes	Marks
8(a)	$(\mathbf{r} =) \begin{pmatrix} -4 \\ -5 \\ 3 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix}$	Forms the parametric form of the line	M1
	3(3t-4)+4(4t-5)-(3-t)=17 ⇒ $t = (2)$	Substitutes the parametric form for the line into the plane equation and solves for " <i>t</i> ". Depends on the first mark.	dM1
	$\begin{pmatrix} -4\\-5\\3 \end{pmatrix} + "2" \begin{pmatrix} 3\\4\\-1 \end{pmatrix}$	Uses their value of <i>t</i> correctly to find <i>Q</i> . Depends on the previous mark.	dM1
	(2, 3, 1)	Correct coordinates Accept if written as a column vector but not with i , j , k	A1 (4)
Way 2	$\frac{x+4}{3} = \frac{y+5}{4} = \frac{z-3}{-1}$ eg x = f(y) z = g(y)	Forms the Cartesian equation of the line, rearranges twice to get 2 of x , y , z as functions of the third	M1
		Substitutes these into the plane equation and solves for one coordinate	dM1
	(2, 3, 1)	Obtains the other 2 coordinates Correct coordinates Accept if written as a column vector but not with i , j , k	dM1 A1
			(4)
(b)	$\mathbf{PQ} = \begin{pmatrix} 2+4\\ 3+5\\ 1-3 \end{pmatrix}, \ \mathbf{PR} = \begin{pmatrix} -1+4\\ 6+5\\ 4-3 \end{pmatrix}, \ \mathbf{RQ} = \begin{pmatrix} 2+1\\ 3-6\\ 1-4 \end{pmatrix}$	Attempts 2 vectors in plane PQR (Must use the given coordinates of P , R and their coordinates of Q	M1
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 8 & -2 \\ 3 & 11 & 1 \end{vmatrix} = \begin{pmatrix} 30 \\ -12 \\ 42 \end{pmatrix}$	Attempt vector product between 2 vectors in <i>PQR</i> . Depends on the first mark.	dM1
	$\begin{pmatrix} 5\\-2\\7 \end{pmatrix} \begin{pmatrix} 2\\3\\1 \end{pmatrix} = 11$	Uses any of <i>P</i> , <i>Q</i> or <i>R</i> to find constant. Depends on the previous mark.	dM1
	5x - 2y + 7z = 11	Any correct Cartesian equation	A1
			(4)

Way 2	-4a-5b-3c = 1 $2a+3b+c = 1$ $-a+6b+4c = 1$	Uses the Cartesian form of the equation of a plane, $ax + by + cz = 1$, and substitutes the coordinates of each of the 3 points	M1
	Solves to get a value for any of <i>a</i> , <i>b</i> or <i>c</i>		dM1
	Obtains values for the other 2		dM1
	$\frac{5}{11}x - \frac{2}{11}y + \frac{7}{11}z = 1$	Any correct Cartesian equation	A1
			(4)

(c)	Reflection of P in Π is		
	$\begin{pmatrix} -4 \\ -5 \\ 3 \end{pmatrix} + 2 \times 2'' \begin{pmatrix} 3 \\ 4 \\ -1 \end{pmatrix} \begin{pmatrix} 8 \\ 11 \\ -1 \end{pmatrix}$	Correct strategy for another point on l_3	M1
	$\begin{pmatrix} 8\\11\\-1 \end{pmatrix} - \begin{pmatrix} -1\\6\\4 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} 9\\5\\-5 \end{pmatrix} \end{pmatrix}$	Attempts direction of <i>l</i> ₃ . Depends on the first mark.	dM1
	$\mathbf{r} = \begin{pmatrix} -1\\ 6\\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 9\\ 5\\ -5 \end{pmatrix}$	Forms the equation of l_3 using R (or their reflected P) and their direction. Depends on the previous mark.	ddM1
	$\begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix}$	Any correct equation in vector form	A1 (4)
			Total 12

Question Number	Scheme	Notes	Marks
9	$\frac{x^2}{9} + \frac{y^2}{4} = 1$	y = kx - 3	
(a)		$\frac{+9}{-1} = 1 \qquad \Rightarrow 4x^2 + 9(k^2x^2 - 6kx + 9) = 36$	M1
-	Substitutes to obtain a quadra $(9k^2+4)x^2-54kx+45=0*$	tic in <i>x</i> and eliminates fractions Correct proof with no errors	A1*
-	(3k + 1)x = 3+kx + 15 = 0	Conect proor with no errors	(2)
(b)	$x = \frac{1}{2} \left(\frac{9k^2 + 4}{9k^2 + 4} \right) = \frac{1}{9k^2 + 4}$ OR $x = \frac{54k \pm \sqrt{\text{discriminant}}}{2(9k^2 + 4)}$	Uses $\frac{1}{2}$ sum of roots for the <i>x</i> coordinate OR Solve the equation (by formula), add the 2 roots and halve the result. Must reach x_m . Allow errors in the discriminant	M1
	$y = \frac{27k^2 - 27k^2 - 12}{9k^2 + 4} = -\frac{12}{9k^2 + 4}$	Uses the straight line equation to find y as a single fraction, can be unsimplified Depends on first M mark of (b)	dM1
	$x = \frac{27k}{9k^2 + 4}, y = -\frac{12}{9k^2 + 4}$	Fully correct work	A1
(c)	72012	72012 + 144	(3)
(0)		$+ py^{2} = \frac{729k^{2} + 144p}{(9k^{2} + 4)^{2}}$ ing their coordinates obtained in (b) and	M1
	_	non denominator	
		$>729k^2 + 144p = -12q(9k^2 + 4)$	
		$=81\left(9k^2+\frac{16}{9}p\right)$	dM1
	$\Rightarrow \frac{16}{9} p = 4 \Rightarrow p = \dots$		
	Correct strategy to obtain a value for <i>p</i> or for <i>q</i> Depends on the first M mark of (c)		
	$p = \frac{9}{4}$ or $q = -\frac{27}{4}$ oe	Correct value (or for q if found first)	A1
	$-12q = 81 \Longrightarrow q = \dots$	Correct strategy to obtain a value for the second variable Depends on both previous M marks	ddM1
	$\Rightarrow x^{2} + \frac{9}{4}y^{2} = -\frac{27}{4}y$ $p = \frac{9}{4} \text{ and } q = -\frac{27}{4} \text{ oe}$	Both values correct – can be embedded in the equation	A1
			(5)

(c) Way 2	$x = \frac{27k}{9k^2 + 4}, y = -\frac{12}{9k^2 + 4} \Rightarrow \frac{x}{y} = -\frac{27k}{12} \Rightarrow k = -\frac{4x}{9y}$ Obtains k in terms of x and y using their coordinates found in (b)	M1	
	$k = -\frac{4x}{9y} \Rightarrow y = -\frac{12}{9\left(\frac{16x^2}{81y^2}\right) + 4} \text{ or } x = \frac{27\left(-\frac{4x}{9y}\right)}{9\left(\frac{16x^2}{81y^2}\right) + 4}$ dM1:Substitutes <i>k</i> into <i>y</i> or <i>x</i> to obtain a Cartesian equation A1: Any correct Cartesian equation Depends on the first M mark of (c)		
	$\Rightarrow x^{2} + \frac{9}{4}y^{2} = -\frac{27}{4}y$ Rearranges to the form required Depends on both previous M marks of (c) Correct equation or correct values stated	ddM1 A1	
		Total 10	