

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log number P71200A
Publications Code WST01_01_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
- e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question		Scheme	Mai	rks
Number	0		D1	
1(a)	w = 8		B1	
	x = 19		B1 B1	
	y = 37		DI	(2)
(h)	"37" : 1	×("37"-"19") [= 55]	M1	(3)
(b)			M1	
	59 and 6	4	A1ft	(2)
(c)	10 20 30 40 50 60 Hours			(3)
(d)	("37"-	26) – (26 – "19") 37" – "19")	M1	(3)
		= 0.22 (to 2 sf)	A1	
(2)	E ~ 'Th	11 4h - data?	D1	(2)
(e)	E.g. 1n	e mean uses all the data'	B1	(1)
			Tote	al 11
		Notes	100	41 11
(a)	B1B1B1	Cao May be seen in table before part (a). $w = 28$ is first B0.		
(b)	M1	Calculation for the outliers using their lower quartile and upper quartile. Allow "their upper quartile" + "their IQR" for this mark i.e. 37 + 18		
	A1ft	For identifying 59 and 64 as outliers from correct working. Ft the identification of outlier(s) (if any) from "their 55" from their shown calculation Answer only is M0A0.	·	
(c)	M1	For a box with at least one whisker drawn		
	A1ft	14 for lowest whisker, 26 for median, "19" and "37" plotted for quartiles ft their value quartiles	es for	
	A1ft	Upper whisker at 51 or "their 51" plus "their outliers" plotted but there must be at lea for this mark. Condone upper whisker at "their 55". NB award A0 if there is more than one whisker at either end	st one or	ıtlier
(d)	M1	For substituting their values into the formula		
	A1	Allow awrt 0.22 (allow $\frac{2}{9}$ or $0.\dot{2}$)		
(e)	B1	A correct reason which supports <i>Landacre</i> 's use of the mean or rejects their use of the Allow comment relating to (slight) positive skew so mean > median so <i>Landacre</i> will larger average they will have to pay. Comments about skewness/symmetry on their own score B0. Mean includes the outliers is B1. Condone Median is not affected by the outliers for B1. Mean is more accurate is B0.		

Question Number		Scheme	Ma	rks	
2(a)	$S_{gg} = 3624.41 - \frac{144.84^2}{9} [= 1293.4516]$				
	$r = \frac{40.25}{\sqrt{"1293.4516" \times 1.29}}$				
		.985 awrt 0.985	A1		
				(3)	
(b)	As th	e population/t increases, GDP/g increases oe	B1	` ´	
				(1)	
(c)	$b = \frac{2}{3}$	$\frac{40.25}{1.29} [= 31.20155]$	M1		
		$\frac{144.84}{9}$ -"31.20155"× $\frac{7.87}{9}$ [= -11.19068]	M1		
		31.20155 <i>t</i>	A1		
		-11.2 + 31.2t	A1		
				(4)	
(d)		GDP/g increases by (an average of) "31.2" billion [dollars] when the population/t ases by one million.	B1		
				(1)	
(e)(i)	"-11	2"+"31.2"×7	M1		
		= 207.2 awrt 207	A1	(2)	
(ii)	I I mana i	lights as 7,000,000 is much another than the mass resolution $\frac{1}{t}$ for the 0 mass	B1	(2)	
(11)	Office	liable as 7 000 000 is much greater than the mean population/ \overline{t} for the 9 years.	DI	(1)	
(f)	0.1=	="31.2" <i>x</i>	M1	(1)	
()		x = 0.003205 million people awrt 0.0032	A1		
		* *		(2)	
	1	Notes	Total	14	
(a)	M1	Correct method for finding S_{gg} (implied by awrt 1290 to 3sf)			
	M1 A1	Correct method for finding r using their S_{gg} If $S_{gg} = 3624.41$ is used here, then M0. awrt 0.985 (correct answer only scores M1M1A1)			
(b)		A correct interpreted contextual statement including population (or <i>t</i>) and GDP (or <i>g</i>).			
(3)	B 1	'Strong positive correlation between population and GDP' on its own is B0.			
(c)	M1	Correct method for finding b			
	M1	Correct method for finding a using their b			
	1011	$a = 16.0 "31.20155" \times 0.874[= -11.19068]$			
	A1	Only dep on 1 st M1 awrt 31.2 in a regression equation (allow any variables in the eq	uation)		
	A1	Correct equation $g = \operatorname{awrt} - 11.2 + \operatorname{awrt} 31.2t$ (must be g and t) Do not allow fraction			
(d)	B1 Idea that the GDP increases by "Their b" billion dollars for every 1 million increase in population				
(e)(i)	M1	Correct method. Allow substitution of 7 000 000 instead of 7			
(ii)	A1	awrt 207 (billion) (isw after an answer of 207 is seen)	1		
(ii)	Unreliable with a correct supporting comment which must reference t or \overline{t} [=0.874] or population 'Extrapolation so unreliable' on its own is B0. Reference to g out of range is also B0.			n	
(f)	Equating 0.1 with "their b " $\times x$ Or substituting two values for g with a difference of 0.1 in their equation leading to a value of x				
	A1 awrt 0.0032 (million) Allow awrt 3200 (to 2sf) Do not allow fractions.				

Signature Sig	Qu. No.		Scheme	Marks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3(a)	Width = 2.5 (cm)		
(a) Median = $[20] + \frac{25}{35} \times 5$ allow $[20] + \frac{25.5}{35} \times 5$ M1 $= 23.57 \text{ allow } 23.64 \text{ awrt } 23.6 \text{ A1}$ (b) $P(4 \log \sin) = \left(\frac{62}{88}\right) \times \left(\frac{60}{87}\right) \times \left(\frac{60}{86}\right) \times \left(\frac{59}{85}\right)$ M1 $= 0.23922 \text{ awrt } 0.239 \text{ A1}$ (c) $P(4 \log \sin) = \left(\frac{62}{88}\right) \times \left(\frac{61}{87}\right) \times \left(\frac{60}{86}\right) \times \left(\frac{59}{85}\right)$ M1 $= 0.23922 \text{ awrt } 0.239 \text{ A1}$ (c) $P(4 \log \sin) = \left(\frac{62}{88}\right) \times \left(\frac{61}{87}\right) \times \left(\frac{60}{86}\right) \times \left(\frac{59}{85}\right)$ M1 $= 0.23922 \text{ awrt } 0.239 \text{ A1}$ (c) $P(4 \log \sin) = \left(\frac{924}{88}\right) \times \left(\frac{61}{87}\right) \times \left(\frac{60}{85}\right) \times \left(\frac{59}{85}\right)$ M1 $= 0.23922 \text{ awrt } 0.239 \text{ A1}$ (2) M1 $= -531 \text{ A1}$ (3) M1 $= -531 \text{ A1}$ (3) M1 $= -531 \text{ A2}$ (3) Wariance of $y = \frac{12862}{88} \times \left(\frac{(10.5)^n}{2}\right)^2 = 35.909]$ M1 $= -143.636 \text{ awrt } 144 \text{ A1}$ (3) $= -143.636 \text{ awrt } 144 \text{ A1}$ (4) $= -143.636 \text{ awrt } 144 \text{ A1}$ (5) $= -143.636 \text{ awrt } 144 \text{ A1}$ (5) $= -143.636 \text{ awrt } 144 \text{ A1}$ (6) $= -143.636$		Heigh	ht = $\left(\frac{35}{15} \times 6\right)$ ÷ "2.5" or $\frac{4}{5} \times 7$ or 6 cm ² = 15 (logs) or 14 cm ² = 35 (logs) oe	M1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 5.6 (cm)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				(3)
(c) $19+35+8 = 62^{\circ}$) or $88-3-15-8 = 62^{\circ}$) Blcso* (d) $P(4 \log fit) = \left(\frac{62}{88}\right) \times \left(\frac{61}{87}\right) \times \left(\frac{60}{86}\right) \times \left(\frac{59}{85}\right)$ M1 $= 0.23922$ awrt 0.239 A1 (e)(i) $\frac{1}{10} = \frac{924}{88} = 10.5$ M1 $= 0.3392$	(b)	Medi	an = $[20] + \frac{25}{35} \times 5$ allow $[20] + \frac{25.5}{35} \times 5$	M1
(c) $19 + 35 + 8 (= 62^*)$ or $88 - 3 - 15 - 8 (= 62^*)$ (1) $P(4 \log s \text{ fit}) = \left(\frac{62}{88}\right) \times \left(\frac{61}{87}\right) \times \left(\frac{60}{86}\right) \times \left(\frac{59}{85}\right)$ M1 $= 0.23922$ awrt 0.239 A1 (e)(i) $mean of y = \frac{924}{88} [= 10.5]$ M1 $mean of w = ("10.5" + 255) \times 2$ M1 $= 531$ A1 (ii) $variance of y = \frac{12862}{88} - ("10.5")^2 [= 35.909]$ M1 $variance of w = "35.909" \times 4 \text{ or "} 35.909" \times 0.5^2$ M1 $= 143.636$ awrt 144 A1 (a) $\frac{B1}{A1}$ Correct method to relate area to number of logs (may be implied by "their w " × "their h " = 14) A1			= 23.57 allow 23.64 awrt 23.6	i
$ (d) \qquad P(4 \log \operatorname{fit}) = \left(\frac{62}{88}\right) \times \left(\frac{61}{87}\right) \times \left(\frac{60}{86}\right) \times \left(\frac{59}{85}\right) \qquad \qquad M1 $ $ = 0.23922 \qquad \operatorname{awrt} 0.239 \qquad A1 $ $ (e)(i) \qquad \operatorname{mean of } y = \frac{924}{88} [= 10.5] \qquad \qquad M1 $ $ = 10.23922 \qquad \operatorname{man of } y = \frac{924}{88} [= 10.5] \qquad \qquad M1 $ $ = 10.5 + 255 \times 2 \qquad \qquad M1 $	(c)	19 +	35 + 8 (-62*) or $88 - 3 - 15 - 8 (-62*)$	
(d) $ \begin{array}{c} P(4 \log s \mathrm{fit}) = \left(\frac{62}{88}\right) \times \left(\frac{61}{87}\right) \times \left(\frac{60}{86}\right) \times \left(\frac{59}{85}\right) & \mathrm{MI} \\ = 0.23922 & \mathrm{awrt} 0.239 & \mathrm{AI} \\ \hline \\ (e)(i) & \mathrm{mean} \mathrm{of} y = \frac{924}{88} [= 10.5] & \mathrm{MI} \\ \hline \\ \mathrm{mean} \mathrm{of} w = \left("10.5" + 255\right) \times 2 & \mathrm{MI} \\ \hline \\ = 531 & \mathrm{AI} & (3) \\ \hline \\ (ii) & \mathrm{variance} \mathrm{of} y = \frac{12862}{88} - \left("10.5"\right)^2 [= 35.909] & \mathrm{MI} \\ \hline \\ \mathrm{variance} \mathrm{of} w = \frac{135.909 \times 4 \mathrm{or} "35.909" + 0.5^2}{-143.636} & \mathrm{awrt} 144 & \mathrm{AI} \\ \hline \\ (a) & \mathrm{MI} & \mathrm{Correct} \mathrm{method} \mathrm{to} \mathrm{relate} \mathrm{area} \mathrm{to} \mathrm{number} \mathrm{of} \mathrm{logs} (\mathrm{may} \mathrm{be} \mathrm{implied} \mathrm{by} "their w" \times "their h" = 14) \\ \hline \\ (b) & \mathrm{MI} & \mathrm{Correct} \mathrm{method} \mathrm{to} \mathrm{relate} \mathrm{area} \mathrm{to} \mathrm{number} \mathrm{of} \mathrm{logs} (\mathrm{may} \mathrm{be} \mathrm{implied} \mathrm{by} "their w" \times "their h" = 14) \\ \hline \\ (c) & \mathrm{AI} & \mathrm{S.6} \mathrm{ce} \\ \hline \\ \mathrm{AI} & \mathrm{Correct} \mathrm{answer} \mathrm{from} \mathrm{correct} \mathrm{working} \mathrm{downwards} \mathrm{c.g.} \left[25 \right] - \frac{10}{35} \times 5 \\ \hline \\ \mathrm{AI} & \mathrm{Correct} \mathrm{answer} \mathrm{from} \mathrm{correct} \mathrm{working} \mathrm{sepholomorphism} \mathrm{method} \frac{1}{35} \times \mathrm{bolomorphism} \mathrm{sepholomorphism} sepho$	(6)	17 1	33 + 0 (= 02)	
(e)(i) $\begin{array}{ c c c c c } \hline \\ mean of $y = \frac{924}{88}[=10.5]$ & M1 \\ \hline \\ mean of $w = ("10.5"+255)\times 2$ & M1 \\ \hline \\ & & & & & & & & & & & & & & & & &$	(d)	P(4 le		M1
(e)(i) $ \begin{array}{c} \text{mean of } y = \frac{924}{88} \Big[= 10.5 \Big] \\ \text{mean of } w = ("10.5" + 255) \times 2 \\ \text{mean of } w = ("10.5" + 255) \times 2 \\ \text{mean of } w = ("10.5" + 255) \times 2 \\ \text{mean of } w = ("10.5")^2 \Big[= 35.909 \Big] \\ \text{M1} \\ \text{variance of } w = "35.909" \times 4 \text{ or } "35.909" \div 0.5^2 \\ \text{may consider of } w = "35.909" \times 4 \text{ or } "35.909" \div 0.5^2 \\ \text{mode of } w = "35.909" \times 4 \text{ or } "35.909" \div 0.5^2 \\ \text{mode of } w = 143.636 \\ \text{mode of } w = 143.636 \\ \text{Notes} \\ \text{M1} \\ \text{Correct method to relate area to number of logs (may be implied by "their w" × "their h" = 14)} \\ \text{M1} \\ \text{Correct method to relate area to number of logs (may be implied by "their w" × "their h" = 14)} \\ \text{M1} \\ \text{Correct answer from correct working. Allow exact fraction.} \\ \text{(c)} \\ \text{M1} \\ \text{Correct answer from correct working. Allow exact fraction.} \\ \text{(c)} \\ \text{M2} \\ \text{M3} \\ \text{M3} \\ \text{M3} \\ \text{M4} \\ \text{M5} \\ \text{M6} \\ \text{M5} \\ \text{M6} \\ \text{M6} \\ \text{M6} \\ \text{M7} \\ \text{M7} \\ \text{M7} \\ \text{M7} \\ \text{M7} \\ \text{M8} \\ \text{M8} \\ \text{M7} \\ \text{M8} \\ \text{M8} \\ \text{M9} \\ \text{Correct method for finding mean of } w \\ \text{M9} \\ \text{M1} \\ \text{Correct method for finding mean of } w \\ \text{M1} \\ \text{Correct method for finding mean of } w \\ \text{M2} \\ \text{M3} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M1} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M2} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M3} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M3} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M3} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M6} \\ \text{M1} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M1} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M1} \\ \text{Correct method for finding variance of } y \\ \text{(implied by awrt 35.9)} \\ \text{M3} \\ \text{M3} \\ \text{M4} \\ \text{M5} \\ \text{M5} \\ \text{M5} \\ $			= 0.23922 awrt 0.239	
(ii) variance of $y = \frac{12862}{88} - ("10.5")^2 [= 35.909]$ Variance of $w = "35.909" \times 4$ or "35.909" $\div 0.5^2$ $= 143.636$ Notes Notes Notes Notes Notes Total 14 (a) B1 2.5 oe M1 Correct method to relate area to number of logs (may be implied by "their w " \times "their h " $= 14$) A1 5.6 oe (b) M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5 \sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of y (implied by awrt 35.9) or $0.25 \sum w^2 + 255^2 \times 88 - 255 \sum w = 12862$	(e)(i)	mea	n of $y = \frac{924}{88} [=10.5]$	
(ii) variance of $y = \frac{12862}{88} - ("10.5")^2 [= 35.909]$ Variance of $w = "35.909" \times 4$ or "35.909" $\div 0.5^2$ $= 143.636$ Notes Notes Notes Notes Notes Total 14 (a) B1 2.5 oe M1 Correct method to relate area to number of logs (may be implied by "their w " \times "their h " $= 14$) A1 5.6 oe (b) M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5 \sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of y (implied by awrt 35.9) or $0.25 \sum w^2 + 255^2 \times 88 - 255 \sum w = 12862$		mea	n of $w = ("10.5" + 255) \times 2$	M1
(ii) variance of $y = \frac{12862}{88} - ("10.5")^2 [= 35.909]$ Variance of $w = "35.909" \times 4$ or "35.909" $\div 0.5^2$ $= 143.636$ Notes Notes Notes Total 14 (a) B1 2.5 oe M1 Correct method to relate area to number of logs (may be implied by "their w " \times "their h " $= 14$) A1 5.6 oe (b) M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{544.70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao M1 Correct method for finding variance of y (implied by awrt 35.9) or $0.25 \sum w^2 + 255^2 \times 88 - 255 \sum w = 12862$				
(ii) variance of $y = \frac{12862}{88} - ("10.5")^2 [= 35.909]$ M1 variance of $w = "35.909" \times 4$ or "35.909" $\div 0.5^2$ M1 = 143.636 awrt 144 A1 (3) Notes Total 14 (a) B1 2.5 oe M1 Correct method to relate area to number of logs (may be implied by "their w " \times "their h " = 14) A1 5.6 oe (b) M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A Correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5 \sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of y (implied by awrt 35.9) or $0.25 \sum w^2 + 255^2 \times 88 - 255 \sum w = 12862$			- 551	
Correct answer from correct working. Allow exact fraction. Correct answer from correct working. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) SC With replacement awrt 0.246 scores M1A0 M1 Correct method for finding mean of y (implied by awrt 35.9) Or $0.25 \sum w^2 + 255^2 \times 88 - 255 \sum w = 12862$	(ii)	varia	ance of $y = \frac{12862}{88} - ("10.5")^2 [= 35.909]$	M1
Notes N		varia	ance of $w = "35.909" \times 4$ or "35.909" $\div 0.5^2$	M1
Notes Notes Total 14				
(a) B1 2.5 oe M1 Correct method to relate area to number of logs (may be implied by "their w " × "their h " = 14) A1 5.6 oe (b) M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $warping warping wa$				` '
M1 Correct method to relate area to number of logs (may be implied by "their w" × "their h" = 14) A1 5.6 oe M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5 \sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of y (implied by awrt 35.9) or $0.25 \sum w^2 + 255^2 \times 88 - 255 \sum w = 12862$	(a)	R1		10tai 14
(b) M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao (ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$	(a)			= 14)
M1 For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{1}{35} \times 5$ A1 Correct answer from correct working. Allow exact fraction. (c) B1 A correct calculation seen. Allow $\frac{1}{2}$ (16) for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao (ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$		A1		,
(c) B1 A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$ Minimum working required 54 + 8 or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. (d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao (ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$	(b)	M1	For a correct fraction multiplied by 5. Allow working downwards e.g. $[25] - \frac{10}{35} \times 5$	
Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$		A ₁	-	
Minimum working required $54 + 8$ or $70 - 8$ or $\frac{34+10}{2}$ NB: $26 + x = 88 \rightarrow x = 62$ is B0. M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao (ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$	(c)	D1	A correct calculation seen. Allow $\frac{1}{2}(16)$ for 8. Allow equivalent methods $\frac{x-54}{70-54} = \frac{26-25}{27-25}$	
(d) M1 For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$) A1 awrt 0.239 SC With replacement awrt 0.246 scores M1A0 (e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao (ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$		DI	Minimum working required $54 + 8$ or $70 - 8$ or $\frac{54+70}{2}$ NB: $26 + x = 88 \rightarrow x = 62$	is B0.
(e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao (ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$	(d)	M1	For $\left(\frac{n}{88}\right) \times \left(\frac{n-1}{87}\right) \times \left(\frac{n-2}{86}\right) \times \left(\frac{n-3}{85}\right)$ (allow any $n < 88$)	
(e)(i) M1 Correct method for finding mean of y (implied by 10.5) or for equation $0.5\sum w - 88 \times 255 = 924$ M1 Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao (ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$		A1	awrt 0.239	
(ii) Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$ A1 Cao Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$		SC		
(ii) A1 Cao Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$	(e)(i)	M1	Correct method for finding mean of y (implied by 10.5) or for equation $0.5 \sum w - 88 \times 2$	255 = 924
(ii) Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$		M1	Correct method for finding mean of w or $\sum w = 46728$ and $\frac{46728}{88}$	
M1 or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$		A ₁		
	(ii)	M1	Correct method for finding variance of y (implied by awrt 35.9) or $0.25\sum w^2 + 255^2 \times 88 - 255\sum w = 12862$	
	•	—		

	A1 awrt 144				
Question Number		Scheme			
4(a)	· ·	$W) = P(H) + P(W) - P(H \cap W)$	$P(H' \cap W) = P(H \cup W) - P(H)$	M1	
	$P(H \cap$	$W) = \frac{3}{8} \times P(W)$	$P(H' \cap W) = P(H') \times P(W)$	M1	
	$\frac{3}{4} = \frac{3}{8} +$	$P(W) - \frac{3}{8}P(W)$	$\frac{3}{8} = \frac{5}{8} P(W)$ $P(W) = \frac{3}{5} *$	A1	
	P(W) =	$\frac{3}{5}$ *	$P(W) = \frac{3}{5} *$	A1cso*	
				(4)	
(b)	P(N' A)	$H = \frac{\frac{3}{8} - \frac{1}{15}}{\frac{3}{8}} \text{ or } \frac{\frac{9}{40} + \frac{1}{12}}{\frac{3}{8}} \text{ or } 1 - \frac{\frac{1}{15}}{\frac{3}{8}}$ $= \frac{37}{45} = \text{awrt } 0.822$		M1	
		$=\frac{37}{45}$ = awrt 0.822		A1	
				(2)	
(c)		$ \begin{array}{c c} H \\ \hline \frac{1}{12} \\ N \\ \hline \frac{1}{15} \end{array} $ $ \begin{array}{c} \frac{9}{40} \\ \hline \frac{3}{8} \end{array} $ $ \begin{array}{c} \frac{1}{4} \end{array} $	$\begin{array}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	B1 M1 M1 M1 A1	
		Notes		Total 11	
(a)	M1		$)-P(H \cap W)$ (with at least one value correctly		
	M1	for use of $P(H \cap W) = P(H \cup W) - P(H) \times P(W)$	P(H) (with at least one value correctly substitution or use of $P(H' \cap W) = P(H') \times P(H')$		
	A1	a correct equation in $P(W)$ (allow W or		1 (**)	
	A1cso*		with no wrong working seen. Dep. on all previo	us marks.	
	NB		$\frac{9}{40}$ can score maximum M1M1A0A0.		
(b)	M1	For $\frac{p}{\frac{3}{8}}$ where $0 use of inde$			
	A1	awrt 0.822			
(c)	B1	3 circles labelled. Either <i>N</i> inside <i>H</i> o not allow blank space to be considere Allow all 3 circles overlapping with a	· · · · · · · · · · · · · · · · · · ·	= 0 , but do	
	M1	For $P(H \cap W) = \frac{3}{2} \times \frac{3}{5} = \frac{9}{40}$ seen	or correctly placed in Venn diagram.		
	M1	For their $\frac{3}{5} - \frac{9}{40} = \frac{3}{8}$ (may be i	mplied by the regions in their $P(W)$ adding to 0.0	6)	
	M1	For their $\frac{3}{8}$ - " $\frac{9}{40}$ " - $\frac{1}{15}$ = " $\frac{1}{12}$ "			
	A1	Fully correct diagram with 1/4 and box	and correct probabilities (allow exact decimal e	quivalents)	

Question Number	Scheme			Marks	
5(a)	E(x)	$R^{2} = 2^{2} \times 0.25 + 3^{2} \times 0.3 + 4^{2} \times 0.15 + 5^{2} \times 0.1 + 6^{2} \times 0.2 $ (= 15.8*)	B1cso*		
				(1)	
(b)	$[sd(R)=]\sqrt{15.8-3.7^2}$				
		$=\sqrt{2.11}$			
	Stand	dard deviation = 1.4525 awrt 1.45	A1		
				(2)	
(c)	d = 1	1	B1		
				(1)	
(d)		-0.2 + 0.1 + a + b = 1 oe	M1		
		$0.1 + 3 \times 0.2 + 4 \times 0.1 + 5a + 6b = 4.55$ oe	M1		
	5(0.	$(6-b)+6b=3.35$ or $5a+6(0.6-a)=3.35 \implies a=0.25$ or $b=0.35$	M1		
	c =	0.4 + 0.25 or $c = 1 - 0.35$	M1		
	c =	0.65 oe	A1		
				(5)	
(e)	$0.9 \times 0.75 \times 0.1$		M1		
	= 0.0675				
				(2)	
(f)	For identifying that if Jessie scores 2, Pabel has no spin oe may be implied		M1		
	$[0.10 \times 0 +] 0.2 \times 0.3 + 0.1 \times 0.15 + "0.25" \times 0.1 + "0.35" \times 0.2$				
	= 0.17				
				(3)	
(-)	D1	Notes	Total	14	
(a)	B1	Correct calculation with all products seen (allow $1 + 2.7 + 2.4 + 2.5 + 7.2$) Figures may be seen in table before part (a). Condone missing addition signs if products s	oon in	ahla	
(b)	M1	Use of formula including the square root	cen m	aoic.	
(0)	A1	awrt 1.45 (correct answer with no working scores M1A1)			
(c)	B1	For 1			
(d)	M1	Allow equivalents eg $a+b=0.6$			
	M1	Allow equivalents eg $5a + 6b = 3.35$			
		Correct method to eliminate a or b (implied by a correct value for a or b)			
	M1	This mark can still be scored even if the method leads to a value of a or b which is not a p	robabil	ity.	
		May see $a = c - 0.4$ to eliminate a or $b = 1 - c$ used to eliminate b			
	M1	A complete method for finding the value of c (condone using any value of a and b for t	his mai	k)	
()	A1	0.65 oe			
(e)	M1	For the product of 3 probabilities			
	A1	0.0675 or exact equivalent fraction eg $\frac{27}{400}$			
(f)	M1	Identifying that if Jessie scores 2, there is only one spin or the 4 correct possibilities or			
	M1	At least 3 correct non-zero probability products ft their a and b (an answer of 0.195 scores	s MOM	1A0)	
	A1	0.17			

Question Number		Scheme	Marks			
6(a)	P(V	$P(V > 104.9) = P(Z > \frac{104.9 - 100}{2.5})$				
		= 1 - 0.975				
	= 0.0250 0.025 or awrt 0.0250					
			(3) M1			
(b)	Expected number = $150 \times "0.025"$					
		= 3.75 awrt 3.75	A1			
		FD/ 1/ 104 0)1	(2)			
(c)	$[P(V > v V < 104.9) =] \frac{[P(v < V < 104.9)]}{P(V < 104.9)} = 0.2801$		M1			
		< V < 104.9) = (1 - "0.025") - P(V < v)	M1			
		$(v) = (1 - 0.025) - (1 - 0.025) \times 0.2801 = 0.7019$ oe	dM1			
	$\frac{v-1}{2}$	$\frac{00}{5} = 0.53$	M1A1			
	v=1	01.325 awrt 101.32 or awrt 101.33	A1			
			(6)			
		Notes	Total 11			
(a)	M1	Standardising with 104.9, 100 and 2.5 (allow ±) implied by 1.96 seen				
	M1	For use of $1-p$ with $0.9 condone answer of 0.0249 for this mark$				
(1-)	A1 M1	Allow 0.025 or awrt 0.0250 (NB calculator answer is 0.02499) (answer only scores M	IIMIAI)			
(b)	M1	For 150×"their part (a)"	1 1			
(c)	A1 M1	awrt 3.75 isw after answer of 3.75 seen. If 3.75 not seen, allow 4 if the method mark is a For writing or using a ratio of probabilities with denominator $P(V < 104.9)$ oe and equating				
(c)	1411		g to 0.2001			
		$\frac{p}{P(V < 104.9)} = 0.2801$ implied by awrt 0.273				
		Use of independence is M0 a.g. $x \times P(V < 104.9) = 0.2801$				
		Use of independence is M0 e.g. $\frac{x \times P(V < 104.9)}{P(V < 104.9)} = 0.2801$				
	M1 For writing or using $P(V > v \cap V < 104.9) = P(V < 104.9) - P(V < v)[=(1 - "0.025") - P(V < v)]$					
	ALT For first two M marks $\frac{P(V < v)}{P(V < 104.9)} = 1 - 0.2801$ scores M1M1, then follow scheme.					
		(dep M1) Dependent on previous M1 for rearranging to find $P(V < v)$				
	dM1 Allow equivalent oe $(1-"\text{their}(a)")(1-0.2801)$ NB: $[P(V < v) =]$ awrt 0.702 implies M1M1M1 or $[P(V > v) =]$ awrt 0.298 implies M1M1M1					
	Standardising with 100, 2.5 and equating to a z-value, $\frac{v-100}{2.5} = z$ 0.4 < $ z $ < 0.6		111/11			
	1711	Watch out for $\frac{v-100}{2.5}$ = probability which is M0				
	A1 Correct equation with compatible signs					
	A1	awrt 101.33 (allow awrt 101.32 from use of calculator)				