

GCSE MATHEMATICS 8300/2F

Foundation Tier Paper 2 Calculator

Mark scheme

November 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded for a common misinterpretation which has some mathematical worth.
M dep	A method mark dependent on a previous method mark being awarded.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values a
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments	
1	75	B1		
		ı		
Q	Answer	Mark	Comments	
2	3 100	B1		
	_			
Q	Answer	Mark	Comments	
3	_5°C	B1		
		1		
Q	Answer	Mark	Comments	
4	Р	B1		
Q	Answer	Mark	Comments	
	d^2	B1		
	A	ditional G)idanaa	
	Ad	ullional C	Buldance	
	Allow D^2			B1
5(a)	$dd = d^2$			B1
	dd			В0
	$1d^2$			В0
	d2			В0

Q	Answer	Mark	Comments	
	1 or <i>n</i> ⁰	B1		
	Ad	ditional G	Guidance	
5(b)	$\frac{n}{n} = 1 \text{ or } \frac{n}{n} = n^0$			B1
	$\frac{n}{n}$			В0
	$\frac{1}{1}$ or 1 ÷ 1			В0

Q	Answer	Mark	Comments	
	2 <i>t</i>	B1		
	Ad	ditional G	Guidance	
	Allow 2T			B1
5(c)	$2 \times t = 2t$			B1
0(0)	$2 \times t$			В0
	2 ^t			В0
	$\frac{2t}{1}$ or $\frac{2}{1}t$			В0

Q	Answer	Mark	Comments	
	1000 or 10 ³	B1		
	Additional Guidance			
6(a)	Allow commas but not decimal points			
	eg 1,000 or 10,00 B1			
	eg 1.000 or 10.00			В0

Q	Answer	Mark	Comments	
	4.7 or $\frac{47}{10}$ or $4\frac{7}{10}$	B1		
6(b)	Ad	ditional G	Guidance	
	Allow extra zeros eg 4.70			B1

Q	Answer	Mark	Comments	
	1/4	B1	oe fraction eg $\frac{2}{8}$	
6(c)	Ad	ditional G	Guidance	
	0.25			В0

Q	Answer	Mark	Comments		
	19 19		accept √361 √361		
	or	B1			
	_19 _19				
6(d)	Additional Guidance				
	Condone 19 only in one box if other box is blank				
	Condone –19 only in one box if other	B1			
	Condone $\sqrt{361}$ only in one box if other box is blank				

Ans	wer	Mark	Comments	
(One test) One ar	nd a half symbols	B1	allow any orientation for the	half circle
(Two tests) Three	symbols	B1		
(Three tests) Fou	r symbols		SC1 totals seen for either pi	ctogram
		B1	ie 12, 16, 6 for group A	
			or 6, 12, 16 or 1.5, 3, 4 for	group B
	Add	ditional G	uidance	
Mark intention eg accept any attempt at circle and half circle symbol (unless obviously intended to be quarter or three-quarter circle) and allow different sizes and symbols such as plain circles				
Two half circle symbols are not acceptable for a whole circle (unless joined to make a circle)				
Alignment of symbols is not being tested				
Apart from the Special Case, ignore numbers given				
SC1 may be implied by 6, 12 and 16 symbols				
One test Two tests				
			B1B1B1	
Three tests				
	(One test) One are (Two tests) Three (Three tests) Four Mark intention eg (unless obviously different sizes and Two half circle sy to make a circle) Alignment of symmath Apart from the Sp SC1 may be implied to the st Two tests	(One test) One and a half symbols (Two tests) Three symbols (Three tests) Four symbols Add Mark intention eg accept any attempt (unless obviously intended to be quar different sizes and symbols such as provided to make a circle) Alignment of symbols is not being test of the symbols is not being test of the symbols are not accept to make a circle) Apart from the Special Case, ignore in SC1 may be implied by 6, 12 and 16 One test Ore Two tests Ore Ore	(One test) One and a half symbols (Two tests) Three symbols B1 (Three tests) Four symbols B1 Additional G Mark intention eg accept any attempt at circle a (unless obviously intended to be quarter or three different sizes and symbols such as plain circle Two half circle symbols are not acceptable for to make a circle) Alignment of symbols is not being tested Apart from the Special Case, ignore numbers of SC1 may be implied by 6, 12 and 16 symbols One test One test Two tests	(One test) One and a half symbols B1 (Three tests) Four symbols B1 (Three tests) Four symbols B1 SC1 totals seen for either pine in items in

Q	Answer	Mark	Comments	
	$\frac{17}{25}$ or 0.68 or 68% or $25 - 17$ or 8 seen	M1	oe may be seen in a calculation eg 1 $-\frac{17}{25}$	ı
	$\frac{8}{25}$ or 0.32 or 32%	A1	oe	
	Additional Guidance			
	Ignore simplification or conversion if correct answer seen			
7(b)	$\frac{8}{25}$ in working or on answer line with	8 on ans	wer line	M1A0
	Ignore words if correct answer seen eg $\frac{8}{25}$ unlikely			
	Answer 8 : 25 or 8 : 17 or 17 : 8 (even if correct answer also seen) M1A0			M1A0
	8 out of 25 without correct answer seen			M1A0
	Answer 17: 25 only			M0A0
	eg $\frac{8}{17}$ or $\frac{1}{8}$ or 8% implies 8			M1

Q	Answer	Mark	Comments	
	3 × 13 + 4 × -2		oe	
	or	M1		
	(3r =) 39 or (4t =) -8			
	31	A1		
	Additional Guidance 39 + 8			
8				
	39 or -8 may be implied by a calculation eg $3 \times 13 + 4 \times 2 = 47$			M1A0
	47 only does not imply 39			M0A0
	Values are not implied by incorrect expressions eg only $39r$			
	Incorrect further work			A0

Q	Answer	Mark	Comments		
	Alternative method 1 Using number of coins left				
	295 ÷ 8 or 36(.875) or 36.88 or 36.9	M1	oe implied by (295 ÷ 20) ÷ 8 or 14.75 ÷ 8 or 1.84		
	their 36 × 8 or 288 or their 36.875 – their 36 or 0.8(75) or 0.88	M1dep	oe their 36 must be an integer		
	295 – their 288 or their 0.875 × 8 or 7 (coins left)	M1dep	oe implied by $0.875 \times 20 \times 8$ or 0.875×160 or 140 or 1.4		
	1.40	A1			
	Alternative method 2 Using total value of coins given				
9	295 ÷ 8 or 36(.875) or 36.88 or 36.9	M1	oe implied by (295 ÷ 20) ÷ 8 or 14.75 ÷ 8 or 1.84		
	their 36 × 20 × 8 or their 36 × 160 or 5760	M1dep	oe their 36 must be an integer		
	295 × 20 or 5900	M1	oe		
	1.40	A1			
	Alternative method 3 Using value of coins given to each child				
	295 ÷ 8 or 36(.875) or 36.88 or 36.9	M1	oe implied by (295 ÷ 20) ÷ 8 or 14.75 ÷ 8 or 1.84		
	their 36 × 20 or 720	M1dep	oe their 36 must be an integer		
	295 ÷ 8 × 20 or 5900 ÷ 8 or 737(.5) or 738	M1dep	oe dep on 1st M1 only		
	1.40	A1			

Additional Guidance is on the next page

	Additional Guidance					
	Up to M3 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts					
	Use the scheme that awards most marks					
	Methods are shown in pence but equivalent working may be in pounds					
9 cont	NB 7 coins per child or $(£)$ 7, possibly from truncating £7.37 or £7.20 or from 56 \div 8, does not imply M3 in Alt 1. The 7 must be coins left					
	Alt 3 740 or 7.4(0) with no method does not imply 737.5 or 7.375					
	In Alt 2 the 3rd mark is not dependent					
	Note that the third mark in Alt 3 implies the first mark					
	ie 737(.5) or 738	M1M0M1				

Q	Answer	Mark	Comments	
10	$62-54$ or 8 or $54-62$ or -8 or $\frac{62-54}{2}$ or 4 or $\frac{54-62}{2}$ or -4 or $\frac{62+54}{2}$ or $\frac{116}{2}$ or 58 or $2+16+13+27=58$ or $1+15+12+30=58$	M1	oe eg 1 + 15 + 16 + 30 - 2 - 12 or 2 + 12 + 13 + 27 - 1 - 15 - or - 1 + 3 + 3 + 3 or 1 - 3 - 3	16 – 30
	12 and 16	A1	either order	
	Additional Guidance			
	Up to M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	Answer 12 and 16 even if working u	g many attempts)	M1A1	
	58 only seen from an incorrect addition	on		MO

Q	Answer	Mark	Comments
11	p=m+5	B1	

Q	Answer	Mark	Comments	
	30 or $\frac{1}{2}$ and 15 or $\frac{1}{4}$ or 45 or $\frac{3}{4}$	M1	oe allow no units or incorrect units may be on graph	
	45 minutes or $\frac{3}{4} \text{ hour}$	A1	oe	
12(a)	Ad	Additional Guidance		
	Allow abbreviated units eg 45 min(s) eg condone 45 m eg $\frac{3}{4}$ h			A1 A1 A1
	45 minutes in working with answer 45			IA1
	$\frac{3}{4}$ hour in working with answer $\frac{3}{4}$			IA1
	0.3 + 0.15 is M0 unless recovered to	45		

Q	Answer	Mark	Comments	
	29 or 4 + 25	M1	oe may be embedded 29 may be on graph eg on y	·-axis
	58	A1	SC1 54	
12(b)	Ad	ditional G	uidance	
	29 \times 2 with no or incorrect evaluation Allow the first mark embedded in a calculation eg 29 + 4 or 29 + 5 + 25 or 29 + 25 + 25 or 29 - 25			

Q	Answer	Mark	Comments		
	Cannot be true Cannot be true Might be true	В3	B1 for each any clear indication		
13	Additional Guidance				
	Only one cross in a row – mark the cross				
	A tick and cross(es) in a row – mark the tick				
	More than one tick in a row scores B0 for that row				

Q	Answer	Mark	Comments	
	$\frac{165 + 567}{12}$ or $\frac{732}{12}$	M1	oe	
	61	A1	SC1 212.25	
14(a)	Additional Guidance			
	Only 165 + 567 ÷ 12 with brackets m	issing		M0A0
	61.00			M1A1
	61.0			M1A0

Q	Answer	Mark	Comments		
	Alternative method 1				
	$50 = \frac{165 + x}{15}$ or $50 \times 15 \text{ or } 750 \text{ seen}$	M1	oe eg 750 = 165 + cost of minibus any letter or symbol or word(s)		
	50 × 15 – 165	M1dep	oe		
	585	A1	SC1 915		
	Alternative method 2				
	165 ÷ 15 or 11	M1	oe		
14(b)	(50 – their 11) × 15		oe		
	or	M1dep			
	39 × 15				
	585	A1	SC1 915		
	Additional Guidance				
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts				
	(165 + any value) ÷ 15 does not imply M1 unless set up as an equation for the first mark of Alt 1				
	Allow 12 as a misread for 15				

Q	Answer	Mark	Comments		
	P(3,0) Q(5,5)	B2	B1 $P(3, 0)$ or $Q(5, 5)$ or both x -coordinates correct or both y -coordinates correct SC1 $P(5, 5)$ $Q(3, 0)$		
15	Additional Guidance				
	Accept eg $P(3, 0)$				
	Do not accept eg $P(3x, 0y)$				

Q	Answer	Mark	Comments		
	360 – 162 – 40 – 90 or 68		oe eg 360 – 292		
	or	M1	or		
	x + x + 162 + 40 + 90 = 360		2x + 292 = 360		
	34 A1				
	Additional Guidance				
16(a)	68 ÷ 2			M1	
	68 may be embedded for M1				
	eg 68 + 162 + 40 + 90 = 360			M1	
	eg 162 + 40 + 90 + 30 + 38 = 360 (because 30 and 38 total 68)				
	eg 162 + 40 + 90 + 34 + 34 = 360 (34	eg 162 + 40 + 90 + 34 + 34 = 360 (34 needs to be selected to score A1)			
	34 seen followed by answer 68			M1A0	

Q	Answer	Mark	Comments	
16(b)	$\frac{135}{90}$ or 1.5 or $\frac{90}{135}$ or 0.66() or 0.67 or any correct method that would lead to answer 243 eg $\frac{162}{90} \times 135$ or $135 \div \frac{90}{162}$ or $\frac{162}{360} \times 135 \times 4$ or 0.45 × 540 or $135 \times 4 \div \frac{360}{162}$ or $162 + 162 \div 2$ or $135 + 108$	M2	oe M1 linking a correct angle with n people eg $90 \rightarrow 135$ or $\frac{1}{4} \rightarrow 135$ or $180 \rightarrow 270$ or $72 \rightarrow 108$ or $135 \times 360 \div 90$ or 135×4 or $\frac{162}{90}$ or 1.8 or $\frac{90}{162}$ or $0.55()$ or 0.5 or $\frac{162}{360}$ or 0.45 or 45% or $\frac{360}{162}$ or $2.22()$	or 540
	243	A1		
	Ade	ditional G	Guidance	
	Up to M2 may be awarded for correct answer, even if this is seen amongst			
	M1 may be seen as eg 90 = 135			
	If shown on pie chart, just writing 135	in Comp	uter sector is insufficient for	
	M1 unless 90 or $\frac{1}{4}$ also shown			
	Allow embedded fraction, even in an	incorrect	calculation for at least M1	
	eg 90 × 135			M1
	eg $\frac{90}{135} \times 162$			M2
	Build-up must be correct or full metho	od must be	e shown	
	243 from an incorrect method eg 135	5 + 40 + 6	8	M0A0

Q	Answer	Mark	Comments	
	100	B1	oe eg 10 ² or hundred	
	Additional Guidance			
17	Do not allow 100 000 000 even if word million is crossed out			
	1 hundred or one hundred or a hundred			
	100 000 000 100 million			B1

Q	Answer	Mark	Comments	
	38.5(0) × 40 000			
	1 540 000	A1	oe eg 1.54 × 10 ⁶ or 1.54 millio SC1 3080000 or 770000	n or 1.54 m
	Additional Guidance			
18(a)	Allow any commas or spaces eg 154,00,00			M1A1
	Using decimal points is A0, even if 1540 000 seen in working eg 15400.00			
	1 540 000 seen in working but loses or gains one zero on answer line is acceptable as a transcription error eg 1 540 000 seen and answer 1 5040 000 or answer 1 540 00 M1A1			N4 0 4
				M1A1
	Do not allow the A1 for further work (or SC1)	but may g	ain M1 eg for digits 154 seen	

Q	Answer	Mark	Comments
18(b)	It is not possible to tell	B1	

Q	Answer	Mark	Comments
	Alternative method 1 Working out	the increa	se using 35%
	55 000 – 40 000 or 15 000	M1	oe
	0.35 × 40 000 or 14 000	M1	oe
	15 000 and 14 000 and Yes	A1	oe
	Alternative method 2 Working out	the tickets	s for the second or first match using 35%
	0.35 × 40 000 or 14 000	M1	oe
	40 000 + 0.35 × 40 000 or 54 000 or	M1dep	oe 1.35 × 40 000 scores M2
	55 000 – 0.35 × 40 000 or 41 000		
	54 000 and Yes or	A1	oe
	41000 and Yes		
	Alternative method 3 Working out the percentage increase		
18(c)	55 000 – 40 000 or 15 000		oe
	or 55 000 40 000 or 1.375	M1	
	<u>55 000 – 40 000</u> 40 000		oe eg $\frac{55 - 40}{40}$
	or $\frac{15\ 000}{40\ 000}$		
	or $\frac{55\ 000}{40\ 000} - 1$ or $1.375 - 1$	M1dep	
	or 0.375 or 37.5		
	or 1.375 and 1.35		
	37.5 and Yes		oe
	0.375 and 0.35 and Voc	Λ 1	
	0.375 and 0.35 and Yes or	A1	
	1.375 and 1.35 and Yes		

Additional Guidance is on the next page

	Additional Guidance			
	Up to M2 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	May use sales of tickets but must use 1 540 000			
	Alt 1			
	55000 × 38.5 – 40000 × 38.5 or 2117500 – 1540000 or 577500	M1		
	0.35 × 1540000 or 539000	M1		
	577 500 and 539 000 and Yes	A1		
	Alt 2			
	0.35 × 1540000 or 539000	M1		
	1540000 + 539000 or 2079000 or 2117500 - 539000 or 1578500			
18(c)	2079 000 and 2117 500 and Yes or 1578 500 and 1540 000 and Yes			
cont	Alt 3			
	55000 × 38.5 – 40000 × 38.5 or 2117500 – 1540000 or 577500	N.4.4		
	or $\frac{2117500}{1540000}$	M1		
	<u>2117500 - 1540000</u> <u>1540000</u>	M1dep		
	37.5 and Yes	A1		
	Only 40 000 – 55 000 (may be recovered)	M0		
	In Alt 1 the 2nd mark is not dependent			
	Build-up to 35% must be correct or full method must be shown			
	Accept 35% × 40 000 for 2nd mark of Alt 1 or 1st mark of Alt 2	M1		

Q	Answer	Mark	Comments		
	Alternative method 1				
	Pair of integers in the ratio $5:4$ between $20:16$ and $75:60$ or list of multiples of 9 with at least 3 correct including 63 or $63 \div 9 = 7$ or $63 \div 7 = 9$ or $9 \times 7 = 63$	M1	20 and 16 or 25 and 20 or 30 and 24 or 35 and 28 or 40 and 32 or 45 and 36 or 50 and 40 or 55 and 44 or 60 and 48 or 65 and 52 or 70 and 56 or 75 and 60		
	63	A1			
	Alternative method 2				
	An integer [60, 70] divided in the ratio 5 : 4	M1	if no method seen, values m rounded or truncated to at le		
	eg 65 ÷ 9 × 5 and 65 ÷ 9 × 4		eg 65 and 36.1 and 28.8 c	or 28.9	
19	63	A1			
	Additional Guidance				
	Up to M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts				
	M1 pairs of responses may be seen i				
	Answer 35 : 28	M1A0			
	63 seen in list of multiples eg 27, 36, answer	M1A0			
	63 from incorrect method with no M1	M0A0			
	Alt 2 eg $65 \div 9 = 7.2$ with 36 and 28. (because it follows through from their	M1A0			
	Alt 2 eg $65 \div 9 = 7.2$ with 36.1 and 28.8 or 28.9 implies multiplication by 5 and 4 (may have kept full value on calculator)				
	Alt 2 eg 65 and no working with 36 a (because these are not rounded or tr			M0A0	

Q	Answer	Mark	Comments	
20(a)	$\frac{90 - 42}{100} \times 24000$ or $\frac{48}{100} \times 24000 \text{ or } 11520$ or $\frac{42}{100} \times 24000 \text{ or } 10080$ or $\frac{48 - 42}{100} \times 24000$ or 6 and 48 and 42 seen	M1	oe	
	1440	A1	SC1 1920 or answer with o	digits 144
	Additional Guidance			
	Up to M1 may be awarded for correct wor answer, even if this is seen amongst multi			
	Build-up to 48% or 42% must be corr	method must be shown		
	eg only 48% × 24000 with no or inco	rrect eval	uation	MO

Q	Answer	Mark	Comments	
	Ticks Cannot tell and W the number sold (in 2019) valid reason		don't know	
	Additional Guidance			
	Ignore calculations using percentages from the bar chart Allow any unambiguous indication of Cannot tell with a valid reason Ticks Cannot tell and They might have sold fewer drinks (in 2019) B			
20(b)				
	Ticks Cannot tell and It (only) gives p	ercentage	es	B1
	Ticks Cannot tell and It doesn't tell you how many coffees were sold Ticks Cannot tell and Don't have enough information			
	Ticks Cannot tell and Both bars the s	ame heig	ht	В0
	Ticks Yes or ticks No			В0

Q		Answer	Mark		Comments		
		t evaluation of the cube root steger [40, 50]		eg	$\sqrt[3]{40} = 3.4 \text{ or } 40 \rightarrow 3.4$		
	or		M1	eg 3	$3.5^3 = 42.8 \text{ or } 3.5 \rightarrow 42$.8	
		evaluation of the cube of a lor fraction (3, 3.5]					
	42 A1 SC1 answer given as ³ √42						
	Additional Guidance Up to M1 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts						
	Condone eg 40 = 3.4 or $\sqrt{40}$ = 3.4 to mean $\sqrt[3]{40}$ = 3.4						
	Answei	r only 42				M1A1	
	Must select 42 as final answer for M1A1 ie 42 as the last in a list with a blank answer line is not enough for A1 unless 42 selected						
If $\sqrt[3]{42}$ or 3.5^3 is evaluated then it must be correct to award the A1 for 42							
21(a)	NB 42 only from incorrect method eg listing multiples of 3 or 42 ÷ 3 seen or 42 is divisible by 3 as the working				M0A0		
()	Accep	table values for cube roots of	integers	in rang	e		
	40	3.4(19) or 3.42(0)		46	3.5(83) or 3.6		
	41	3.4(48) or 3.45		47	3.6(08) or 3.609 or	3.61	
	42	3.4(76) or 3.48 or 3.5		48	3.6(34)		
	43	3.5(03)		49	3.6(59) or 3.66 or	3.7	
	44	3.5(30)		50	3.6(84) or 3.7		
	45	3.5(56) or 3.557 or 3.56 or 3.6					
	Examples of cubes of numbers in range with their acceptable values						
	3.1	29(.791) or 29.8 or 30		3.4	39(.304)		
	3.2	32(.768) or 32.77 or 32.8 or 33		3.5 or 3.49	42(.875) or 42.88 or or 43	42.9	
	3.3	35(.937) or 35.94 or 36					

Q	Answer	Mark	Comments		
	Valid response that indicates there is one (negative) answer missing	B1	eg -10 (is also an answer) or there is a negative value or square roots have two ar or answer is 10 and -10		
	Ade	ditional G	Guidance		
	−10 × −10 (= 100)			B1	
	Another number can square to make	100 (impl	ies exactly two)	B1	
	She has forgotten the other value (im	plies exa	ctly two)	B1	
	There is another value it could be (im	plies exa	ctly two)	B1	
	It could be a different number (implies exactly two)				
	It could be negative (bod means 10 could be −10)				
	−10 ² (= 100) (condone missing brackets around −10)				
21(b)	± $\sqrt{100}$				
	Indication that there might be more the				
	eg There are other possible numbers	В0			
	eg There could be other values	В0			
	eg Other numbers square to make 10	В0			
	eg She hasn't included negatives			В0	
	Repeating the question				
	eg There is more than 1 possible valu	ue		В0	
	eg 10 is not the only possible value			В0	
	eg More than 1 number works			В0	
	A partially correct statement				
	eg x could be negative or decimal			В0	
	$eg -10 \times -10 = -100$			В0	
	eg $x^2 = -10$			В0	

Q	Answer	Mark	Comments	
22(a)	11 5 4 or 10 7 3 or 10 6 4 or 9 8 3 or 9 7 4 or 9 6 5 or 8 7 5	B2	any order B1 answer of three positive any order with sum 20 eg 17 2 1 or $9\frac{1}{2}$ $8\frac{1}{2}$ 2 or 10 5 5 or $6\frac{2}{3}$ $6\frac{2}{3}$ $6\frac{2}{3}$ or correct equation in w , x and eg $4w + 4x + 4y = 80$ or w	y
	Ade	ditional G	Guidance	
	Ignore attempts to work out the volunt eg 10 5 5 volume calculated at Negative numbers and/or zero used $wxy > 200 \text{ or } wxy = 200$ Allow 6. 6 for $6\frac{2}{3}$		ace area	B1 B0 B0

Q	Answer	Mark	Comments
22(b)	54 <i>a</i> ²	B1	

Q	Answer	Mark	Comments
23	(0, -6)	B1	

Q	Answer	Mark	Comments		
	74.0656 or 74.1 or 74.07 or 74.066	B2	B1 61.4656 or 61.5 or 61 or 61.466 or $\frac{38 416}{625}$ or 12.6 or $\frac{63}{5}$ or $\frac{46 291}{625}$.47	
24(a)	Ad	ditional G	Guidance		
	Truncated answer only eg 74 or 74.0 or 74.06 or 74.065			В0	
	An incorrect answer cannot imply B1 – a value for B1 must be seen				
	Ignore subsequently incorrect rounding or any truncation once a correct B2 response seen				
	eg 74.0656 seen, answer 74			B2	
	eg 74.07 seen, answer 74.0			B2	

Q	Answer	Mark	Comments		
	1.45 × 10 ⁵	B2	B1 correct value not in standard form eg 145 000 or 14.5×10^4		
	Additional Guidance				
	Ignore incorrect conversion if correct B1 value seen				
	eg 145 000, answer 1.45 × 10³			B1	
24(b)	eg 145 000, answer 145³			B1	
	Ignore a decimal point in a correct B1 value if it is part of their conversion attempt				
	Condone 10 ⁵ × 1.45			B2	
	Only 1.45 05 or 1.45 10 ⁵			В0	
	Only 1.45 + 10 ⁵			В0	

Q	Answer	Mark	Comments		
	$1.2 \times 20 = 24$ and $40 - 24 = 16$		oe eg 1.2 × 20 = 24 and 2	4 + 16 = 40	
			or 40 - 16 = 24 and 24 ÷		
			or $24 + 16 = 40$ and $24 \div$	1.2 = 20	
		B1	may be seen as one calcula	tion	
			eg $40 - 1.2 \times 20 = 16$		
			or $16 + 1.2 \times 20 = 40$		
			or $40 - 16 = 1.2 \times 20$		
	Additional Guidance				
	40 - 24 = 16 and $40 - 16 = 24$ and $24 + 16 = 40$ are equivalent				
	$1.2 \times 20 = 24$ and $24 \div 1.2 = 20$ and $24 \div 20 = 1.2$ are equivalent				
25(a)	40-24=16 or $16+24=40$ or $40-16=24$			В0	
	(20 minutes =) 24 litres leak out 40 – 24 = 16			В0	
	1.2 × 20 = 24 16 litres left	В0			
	Allow unambiguous working in ml and	d/or secor	nds		
	For eg 40 – 24 = 16 condone 24 – 4	10 = 16 oı	24 – 40 = –16		
	Condone incorrect use of equals sign	Condone incorrect use of equals sign			
	eg $1.2 \times 20 = 24 + 16 = 40$ or $1.2 \times 20 = 24 - 40 = 16$			B1	
	Correct response with irrelevant work			B1	
	16 from two different ways with one way incorrect is choice				
	eg 1.2 × 20 = 24 and 40 - 24 = 16 and 20 ÷ 1.2 = 16			В0	

Q	Answer	Mark	Comments	
	3	B1		
	Correct method for gradient eg $\frac{40-16}{15-\text{their }3}$ or $\frac{24}{12}$	M1	oe eg $\frac{30-25}{10-7.5}$ or $\frac{10}{5}$ or $40-38$	
	2	A1ft	correct or ft their 3	
	Ad	ditional G	Guidance	
	Note that their 3 can be used to work	out the ra	ate but does not have to be	
	Values seen on graph must be used correctly			
	eg 24 and 12 seen on the graph is M in attempt to work out the gradient	subsequently used correctly		
25(b)	A1ft answers must be to 1 dp or bette			
	eg 3.5	В0		
	$\frac{40-16}{15-3.5}$	M1		
	2.1 (accept 2.08)			
	After B0 the method may be implied (use $\frac{40-16}{15-\text{their }3}$ to check)			
	eg 6			
	2.7 (accept 2.66)			
	If the report is blank, 3 and 2 must be unambiguously identified in working to be acceptable			
	Allow 2 to be written as $\frac{2}{1}$			

Q	Answer	Mark	Comments	
26	14 ² or 196 and 9 ² or 81 or 115	M1	implied by 277 or $\sqrt{277}$ or 16.6(4)	
	$\sqrt{14^2 - 9^2}$ or $\sqrt{196 - 81}$ or $\sqrt{115}$	M1dep		
	10.7(2)	A1	accept 11 with M2 seen	
	Additional Guidance			
	Ignore incorrect rounding or truncation	M1M1A1		
	Answer 10.7(2) with no working			M1M1A1
	Answer 10.7(2) from trigonometry or accurate drawing			M0M0A0

Q	Answer	Mark	Comments	
	Alternative method 1			
27	6x + x + 5x + 6x + x + 6x + x or $26x$ or $6 + 1 + 5 + 6 + 1 + 6 + 1$ or 26	M1	oe eg $7x + 6x - x + 6x + x + 6x + x$ 26x or 26 is implied by 3.8 oe if addition not seen	
	their $26x = 98.8$ or $98.8 \div \text{ their } 26$ or $3.8 \text{ or } \frac{19}{5}$	M1	oe equation must have terms collected if 1st M1 not awarded their 26x must be 24x or 25x or 27x if 1st M1 not awarded their 26 must be 24 or 25 or 27	
	their 3.8 × 14	M1dep	dep on 2nd M1 oe eg 45.6 + 7.6	
	53.2	A1ft	oe ft their 3.8 if M0M2 awarded	

Mark scheme and Additional Guidance continue on the next page

	Alternative method 2			
	6x + x + 6x or $13x$ or $6 + 1 + 6$ or 13	M1	oe eg $6x + x + 5x + x$ 13x or 13 is implied by 3.8 oe if addition not seen	
	their $13x = 98.8 \div 2$ or $49.4 \div \text{ their } 13$ or $3.8 \text{ or } \frac{19}{5}$	M1	oe equation must have terms collected if 1st M1 not awarded their 13x must b 12x if 1st M1 not awarded their 13 must be 12	
	their 3.8 × 14	M1dep	dep on 2nd M1 oe eg 49.4 + 3.8	
	53.2	A1ft	oe ft their 3.8 if M0M2 awarded	
27	Additional Guidance			
cont	Up to M3 may be awarded for correct work with no answer, or incorrect answer, even if this is seen amongst multiple attempts			
	Follow through must be to at least 1 dp and their 26 or their 13 must be seen For information: $24 \rightarrow 57.6$ $25 \rightarrow 55.3$ $27 \rightarrow 51.2$ $12 \rightarrow 57.6$			M0M1M1A1ft
	Both 2nd and 3rd method marks may using 24, 25, 26, 27, 12 or 13 you mu			
	$27x = 98.8$ (1st M0, no addition seen, but $27x$ allowed) $\frac{98.8}{27} \times 14$, answer 51.2			M0M1 M1A1ft
	7x + 5x + 6x + x + 6x + x = 20x (correct terms added with incorrect total) $98.8 \div 20 = 4.94$ 69.16 (multiplication by 14 implied)			M1 M1 M1A0
	$98.8 \div 20 = 4.94$ (1st M0, no addition seen, and 20 not allowed) 4.94×14 , answer 69.16			M0M0 M0A0
	$6x + x + 5x + 6x + x + 6x + x = 26x^{7}$			M1M0M0A0

Q	Answer	Mark	Comments	
	At least two of 2^3 , 3^2 , 7 selected eg $2^3 \times 3^2 \times 7$ or 2 2 2 3 3 7 7 or $2^2 + 3^2 + 7$ or $2^3 \times 3^2$ or $2^3 + 7$ or 3^2 . 7	M1	allow 2^3 to be $2 \times 2 \times 2$ or 8 allow 3^2 to be 3×3 or 9 allow 7 to be 7^1 selection is implied by inclusion in intersection of overlapping circles M0 inclusion of 5 in selection	
	504	A1		
	Additional Guidance			
	8 × 9 × 7		M1	
28	8, 9, 49		M1	
	4 + 9 + 7		M1	
	Intersecting circles with eg only 9 and	ntersection M1		
	Allow inclusion of 1 for up to M1			
	eg $1 \times 2^3 \times 3^2 \times 7$		M1	
	$2^3 \times 3^2 \times 5 \times 7$		MO	
	Answer 504		M1A1	1
	M1 seen with answer the LCM)