AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname \qquad
Forename(s)
Candidate signature
I declare this is my own work.

GCSE

MATHEMATICS

Higher Tier

Thursday 3 November 2022 Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- the Formulae Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
24	
TOTAL	

Advice

In all calculations, show clearly how you work out your answer.

1 Work out $\frac{4^{6}-11}{\sqrt{625}-225}$
Circle your answer.

$$
\begin{array}{llll}
-61.6 & -20.425 & 204.25 & 3870.56
\end{array}
$$

2 Work out $\left(3.1 \times 10^{9}\right)^{2}$
Circle your answer.
6.2×10^{18}
6.2×10^{81}
9.61×10^{18}
9.61×10^{81}

3 The equation of a line is $y=3 x-6$
Circle the coordinates of the y-intercept.
(0, -6)
$(-6,0)$
(0, 3)
$(3,0)$
$4 \quad a \times b^{4}=c$
Circle the correct expression for a.
$\frac{c}{\sqrt[4]{b}} \quad \frac{c}{b^{-4}} \quad\left(\frac{c}{b}\right)^{4} \quad \frac{c}{b^{4}}$

5 Written as the product of prime factors,

$$
12600=2^{3} \times 3^{2} \times 5^{2} \times 7
$$

and
$14112=2^{5} \times 3^{2} \times 7^{2}$
Work out the highest common factor (HCF) of 12600 and 14112
Give your answer as an integer.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

6 The composite bar chart shows information about the percentage of drinks sold by a café in 2007 and 2019

6 (a) In 2007 the café sold a total of 24000 drinks.
How many more teas than coffees were sold?
[2 marks]
\qquad
\qquad
\qquad
\qquad

Answer \qquad

6 (b) Were more coffees sold at the café in 2019 than in 2007?
Tick a box.

Give a reason for your answer.
\qquad
\qquad
\qquad

7 (a) k is a whole number between 40 and 50
The cube root of k is 3 , to the nearest whole number.
Work out the largest possible value of k.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

7 (b) Fay tries to solve $x^{2}=100$
She says,
"The only possible value of x is 10 "
Give a reason why she is not correct.
[1 mark]
\qquad
\qquad
The cube root of k is 3 , to the nearest whole number.
[2 marks]

8 (a) Here is a cuboid.
w, x and y are different whole numbers.

The total length of all the edges of the cuboid is 80 cm
The volume is greater than $200 \mathrm{~cm}^{3}$
Work out one possible set of values for w, x and y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$w=$ $x=$ $y=$

8 (b) Here is a solid cube.

Circle the expression for the total surface area in cm^{2}
$36 a^{2}$
$54 a^{2}$

9 The 47th triangular number is 1128
The 48th triangular number is 1176
Work out the 49th triangular number.
\qquad
\qquad

Answer \qquad

10 The nth terms of two linear sequences, A and B, are added to give the nth term of a new sequence.

The new sequence starts

$$
\begin{array}{llll}
8 & 13 & 18 & 23
\end{array}
$$

The nth term of sequence A is $n+1$
Work out the nth term of sequence B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

11 A tank contains 40 litres of water.

11 (a) Water leaks out of the tank at a rate of 1.2 litres per minute.
The leak is stopped after 20 minutes.
Show that, when the leak is stopped, the tank contains 16 litres of water.
[1 mark]
\qquad
\qquad
\qquad
\qquad

11 (b) The tank is refilled with water from a tap.
The graph shows the amount of water in the tank after the leak is stopped.

Complete this report by writing a number in each answer space.

Report

\qquad minutes after the leak is stopped, the tap starts to refill the tank.

The rate at which the tank refills is \qquad litres per minute.
\qquad
\qquad
\qquad
\qquad

12 The length of this rectangle is 6 times the width.

Not drawn accurately

Two of these rectangles are joined, with no overlap, to make this L-shape.

The perimeter of the L-shape is 98.8 cm
Work out the value of the perimeter of one of the rectangles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer cm
13 Trapezium DEFG is formed by joining
triangle DEH
to
rectangle EFGH.

$A B C$ is similar to $D E H$.
Work out the area of $D E F G$.

Not drawn accurately
[5 marks]
\qquad
Answer \qquad cm^{2}

14 Fred bought an apartment for $£ 137500$
He made 8\% profit when he sold the apartment.
He used all of this profit to pay 40% of the deposit on a house.
The deposit was one sixth of the price of the house.
Work out the price of the house.
[4 marks]
\qquad

Answer £ \qquad

15 Circle the correct statement.
[1 mark]

$$
1 \mathrm{~m}^{2}=100 \mathrm{~mm}^{2} \quad 1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2} \quad 1 \mathrm{~m}^{2}=100 \mathrm{~cm}^{2} \quad 1 \mathrm{~km}^{2}=100 \mathrm{~m}^{2}
$$

16 Here is a sketch of a graph.

Circle the possible equation of the graph.

$$
y=x^{2}+1 \quad y=\frac{1}{x}+1 \quad y=x^{3}+1 \quad y=1-x^{2}
$$

17 A sequence of numbers is formed by the iterative process

$$
u_{n+1}=\frac{20}{u_{n}+3} \quad \text { where } \quad u_{1}=1
$$

Work out u_{3}
Circle your answer.
$\frac{40}{11}$
$\frac{5}{2}$
7
5

Here are the points the team scored in the 19 away games.
85
$89 \quad 93$
95
96
$96 \quad 98$
98
98
99
100
103
105 107 109 110 114 119 126

18 (a) On the grid, draw a box plot for the away games.

Use one statistical measure to support your decision.

18 (c) Was the number of points scored more consistent in home games or away games? Use one statistical measure to support your decision.
\qquad

19 Using the quadratic formula, or otherwise, solve $3 x^{2}+x-5=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

20 A vending machine has a different item in each section.
It sells
7 drinks, 3 of which are juice
5 snacks, 2 of which are fruit bars
11 meals, 4 of which are salad.
One drink, one snack and one meal are chosen at random.
Show that the probability of getting a juice, a fruit bar and a salad is more than 5%
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$21 \quad \mathrm{f}(x)=\frac{3 x+9}{5} \quad$ and $\quad \mathrm{g}(x)=6 x-1$

21 (a) Show that $\mathrm{gf}(2)$ is an integer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

21 (b) Show that $\mathrm{f}^{-1}(8)$ is not an integer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

23 (a) Work out an estimate of the mean time the 61 students spent revising.
You may use the table to help you.

Time, \boldsymbol{x} (hours)	Frequency	Midpoint	
$0 \leqslant x<6$			
$6 \leqslant x<10$			
$10 \leqslant x<12$			
$12 \leqslant x<16$			
$16 \leqslant x<20$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad hours

23 (b) Give a reason why the answer to part (a) is an estimate.
\qquad
\qquad
\qquad
\qquad

$24 \quad B$ is 60 miles from A on a bearing of 170°

A ship sails from A on a bearing of 247°
It travels at a constant speed of 23 mph for $1 \frac{1}{2}$ hours.
Is the ship now closer to B than it was when it left A ?
You must show your working.
\qquad

Two congruent parallelograms, $P Q R V$ and $V R S T$, are joined.

$\overrightarrow{Q P}=\mathbf{a} \quad \overrightarrow{P V}=\mathbf{b}$
X is the midpoint of $V T$.
$V W: W R=1: 2$
Prove that Q, W and X lie on a straight line.
\qquad

26 Helena ran an 800-metre race in 140 seconds.
The speed-time graph represents the first 100 seconds of her run.

Helena ran the last 40 seconds with constant deceleration.
Work out her speed as she finished the race.
\qquad

Answer \qquad metres per second

27 In a class there are
n boys
a total of 25 students.
Two of the students are chosen at random.
The probability that both students are boys is $\frac{7}{20}$
Work out the value of n.
[4 marks]
\qquad
$n=$ \qquad
$28 \quad A B C D E F$ is a triangular prism.
P is a point on $E F$.

$E B=29 \mathrm{~cm}$
Angle $E B P=35^{\circ}$
Angle $E P B=114^{\circ}$
Work out the length of $E P$.
\qquad

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2022 AQA and its licensors. All rights reserved.

